Details

Advanced Calculus with Applications in Statistics


Advanced Calculus with Applications in Statistics


Wiley Series in Probability and Statistics, Band 486 2. Aufl.

von: André I. Khuri

170,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 14.04.2003
ISBN/EAN: 9780471461623
Sprache: englisch
Anzahl Seiten: 704

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Designed to help motivate the learning of advanced calculus by demonstrating its relevance in the field of statistics, this successful text features detailed coverage of optimization techniques and their applications in statistics while introducing the reader to approximation theory. The <i>Second Edition</i> provides substantial new coverage of the material, including three new chapters and a large appendix that contains solutions to almost all of the exercises in the book. Applications of some of these methods in statistics are discusses. 
<p>Preface xv</p> <p>Preface to the First Edition xvii</p> <p><b>1. An Introduction to Set Theory 1</b></p> <p>1.1. The Concept of a Set 1</p> <p>1.2. Set Operations 2</p> <p>1.3. Relations and Functions 4</p> <p>1.4. Finite Countable and Uncountable Sets 6</p> <p>1.5. Bounded Sets 9</p> <p>1.6. Some Basic Topological Concepts 10</p> <p>1.7. Examples in Probability and Statistics 13</p> <p>Further Reading and Annotated Bibliography 15</p> <p>Exercises 17</p> <p><b>2. Basic Concepts in Linear Algebra 21</b></p> <p>2.1. Vector Spaces and Subspaces 21</p> <p>2.2. Linear Transformations 25</p> <p>2.3. Matrices and Determinants 27</p> <p>2.3.1. Basic Operations on Matrices 28</p> <p>2.3.2. The Rank of a Matrix 33</p> <p>2.3.3. The Inverse of a Matrix 34</p> <p>2.3.4. Generalized Inverse of a Matrix 36</p> <p>2.3.5. Eigenvalues and Eigenvectors of a Matrix 36</p> <p>2.3.6. Some Special Matrices 38</p> <p>2.3.7. The Diagonalization of a Matrix 38</p> <p>2.3.8. Quadratic Forms 39</p> <p>2.3.9. The Simultaneous Diagonalization of Matrices 40</p> <p>2.3.10. Bounds on Eigenvalues 41</p> <p>2.4. Applications of Matrices in Statistics 43</p> <p>2.4.1. The Analysis of the Balanced Mixed Model 43</p> <p>2.4.2. The Singular-Value Decomposition 45</p> <p>2.4.3. Extrema of Quadratic Forms 48</p> <p>2.4.4. The Parameterization of Orthogonal Matrices 49</p> <p>Further Reading and Annotated Bibliography 50</p> <p>Exercises 53</p> <p><b>3. Limits and Continuity of Functions 57</b></p> <p>3.1. Limits of a Function 57</p> <p>3.2. Some Properties Associated with Limits of Functions 63</p> <p>3.3. The o O Notation 65</p> <p>3.4. Continuous Functions 66</p> <p>3.4.1. Some Properties of Continuous Functions 71</p> <p>3.4.2. Lipschitz Continuous Functions 75</p> <p>3.5. Inverse Functions 76</p> <p>3.6. Convex Functions 79</p> <p>3.7. Continuous and Convex Functions in Statistics 82</p> <p>Further Reading and Annotated Bibliography 87</p> <p>Exercises 88</p> <p><b>4. Differentiation 93</b></p> <p>4.1. The Derivative of a Function 93</p> <p>4.2. The Mean Value Theorem 99</p> <p>4.3. Taylor’s Theorem 108</p> <p>4.4. Maxima and Minima of a Function 112</p> <p>4.4.1. A Sufficient Condition for a Local Optimum 114</p> <p>4.5. Applications in Statistics 115</p> <p>4.5.1. Functions of Random Variables 116</p> <p>4.5.2. Approximating Response Functions 121</p> <p>4.5.3. The Poisson Process 122</p> <p>4.5.4. Minimizing the Sum of Absolute Deviations 124</p> <p>Further Reading and Annotated Bibliography 125</p> <p>Exercises 127</p> <p><b>5. Infinite Sequences and Series 132</b></p> <p>5.1. Infinite Sequences 132</p> <p>5.1.1. The Cauchy Criterion 137</p> <p>5.2. Infinite Series 140</p> <p>5.2.1. Tests of Convergence for Series of Positive Terms 144</p> <p>5.2.2. Series of Positive and Negative Terms 158</p> <p>5.2.3. Rearrangement of Series 159</p> <p>5.2.4. Multiplication of Series 162</p> <p>5.3. Sequences and Series of Functions 165</p> <p>5.3.1. Properties of Uniformly Convergent Sequences and Series 169</p> <p>5.4. Power Series 174</p> <p>5.5. Sequences and Series of Matrices 178</p> <p>5.6. Applications in Statistics 182</p> <p>5.6.1. Moments of a Discrete Distribution 182</p> <p>5.6.2. Moment and Probability Generating Functions 186</p> <p>5.6.3. Some Limit Theorems 191</p> <p>5.6.3.1. The Weak Law of Large Numbers ?Khinchine’s Theorem. 192</p> <p>5.6.3.2. The Strong Law of Large Numbers ?Kolmogorov’s Theorem. 192</p> <p>5.6.3.3. The Continuity Theorem for Probability Generating Functions 192</p> <p>5.6.4. Power Series and Logarithmic Series Distributions 193</p> <p>5.6.5. Poisson Approximation to Power Series Distributions 194</p> <p>5.6.6. A Ridge Regression Application 195</p> <p>Further Reading and Annotated Bibliography 197</p> <p>Exercises 199</p> <p><b>6. Integration 205</b></p> <p>6.1. Some Basic Definitions 205</p> <p>6.2. The Existence of the Riemann Integral 206</p> <p>6.3. Some Classes of Functions That Are Riemann Integrable 210</p> <p>6.3.1. Functions of Bounded Variation 212</p> <p>6.4. Properties of the Riemann Integral 215</p> <p>6.4.1. Change of Variables in Riemann Integration 219</p> <p>6.5. Improper Riemann Integrals 220</p> <p>6.5.1. Improper Riemann Integrals of the Second Kind 225</p> <p>6.6. Convergence of a Sequence of Riemann Integrals 227</p> <p>6.7. Some Fundamental Inequalities 229</p> <p>6.7.1. The Cauchy_Schwarz Inequality 229</p> <p>6.7.2. H¨older’s Inequality 230</p> <p>6.7.3. Minkowski’s Inequality 232</p> <p>6.7.4. Jensen’s Inequality 233</p> <p>6.8. Riemann_Stieltjes Integral 234</p> <p>6.9. Applications in Statistics 239</p> <p>6.9.1. The Existence of the First Negative Moment of a Continuous Distribution 242</p> <p>6.9.2. Transformation of Continuous Random Variables 246</p> <p>6.9.3. The Riemann_Stieltjes Representation of the Expected Value 249</p> <p>6.9.4. Chebyshev’s Inequality 251</p> <p>Further Reading and Annotated Bibliography 252</p> <p>Exercises 253</p> <p><b>7. Multidimensional Calculus 261</b></p> <p>7.1. Some Basic Definitions 261</p> <p>7.2. Limits of a Multivariable Function 262</p> <p>7.3. Continuity of a Multivariable Function 264</p> <p>7.4. Derivatives of a Multivariable Function 267</p> <p>7.4.1. The Total Derivative 270</p> <p>7.4.2. Directional Derivatives 273</p> <p>7.4.3. Differentiation of Composite Functions 276</p> <p>7.5. Taylor’s Theorem for a Multivariable Function 277</p> <p>7.6. Inverse and Implicit Function Theorems 280</p> <p>7.7. Optima of a Multivariable Function 283</p> <p>7.8. The Method of Lagrange Multipliers 288</p> <p>7.9. The Riemann Integral of a Multivariable Function 293</p> <p>7.9.1. The Riemann Integral on Cells 294</p> <p>7.9.2. Iterated Riemann Integrals on Cells 295</p> <p>7.9.3. Integration over General Sets 297</p> <p>7.9.4. Change of Variables in n-Tuple Riemann Integrals 299</p> <p>7.10. Differentiation under the Integral Sign 301</p> <p>7.11. Applications in Statistics 304</p> <p>7.11.1. Transformations of Random Vectors 305</p> <p>7.11.2. Maximum Likelihood Estimation 308</p> <p>7.11.3. Comparison of Two Unbiased Estimators 310</p> <p>7.11.4. Best Linear Unbiased Estimation 311</p> <p>7.11.5. Optimal Choice of Sample Sizes in Stratified Sampling 313</p> <p>Further Reading and Annotated Bibliography 315</p> <p>Exercises 316</p> <p><b>8. Optimization in Statistics 327</b></p> <p>8.1. The Gradient Methods 329</p> <p>8.1.1. The Method of Steepest Descent 329</p> <p>8.1.2. The Newton_Raphson Method 331</p> <p>8.1.3. The Davidon_Fletcher_Powell Method 331</p> <p>8.2. The Direct Search Methods 332</p> <p>8.2.1. The Nelder_Mead Simplex Method 332</p> <p>8.2.2. Price’s Controlled Random Search Procedure 336</p> <p>8.2.3. The Generalized Simulated Annealing Method 338</p> <p>8.3. Optimization Techniques in Response Surface Methodology 339</p> <p>8.3.1. The Method of Steepest Ascent 340</p> <p>8.3.2. The Method of Ridge Analysis 343</p> <p>8.3.3. Modified Ridge Analysis 350</p> <p>8.4. Response Surface Designs 355</p> <p>8.4.1. First-Order Designs 356</p> <p>8.4.2. Second-Order Designs 358</p> <p>8.4.3. Variance and Bias Design Criteria 359</p> <p>8.5. Alphabetic Optimality of Designs 362</p> <p>8.6. Designs for Nonlinear Models 367</p> <p>8.7. Multiresponse Optimization 370</p> <p>8.8. Maximum Likelihood Estimation and the EM Algorithm 372</p> <p>8.8.1. The EM Algorithm 375</p> <p>8.9. Minimum Norm Quadratic Unbiased Estimation of Variance Components 378</p> <p>8.10. Scheff´e’s Confidence Intervals 382</p> <p>8.10.1. The Relation of Scheff´e’s Confidence Intervals to the F-Test 385</p> <p>Further Reading and Annotated Bibliography 391</p> <p>Exercises 395</p> <p><b>9. Approximation of Functions 403</b></p> <p>9.1. Weierstrass Approximation 403</p> <p>9.2. Approximation by Polynomial Interpolation 410</p> <p>9.2.1. The Accuracy of Lagrange Interpolation 413</p> <p>9.2.2. A Combination of Interpolation and Approximation 417</p> <p>9.3. Approximation by Spline Functions 418</p> <p>9.3.1. Properties of Spline Functions 418</p> <p>9.3.2. Error Bounds for Spline Approximation 421</p> <p>9.4. Applications in Statistics 422</p> <p>9.4.1. Approximate Linearization of Nonlinear Models by Lagrange Interpolation 422</p> <p>9.4.2. Splines in Statistics 428</p> <p>9.4.2.1. The Use of Cubic Splines in Regression 428</p> <p>9.4.2.2. Designs for Fitting Spline Models 430</p> <p>9.4.2.3. Other Applications of Splines in Statistics 431</p> <p>Further Reading and Annotated Bibliography 432</p> <p>Exercises 434</p> <p><b>10. Orthogonal Polynomials 437</b></p> <p>10.1. Introduction 437</p> <p>10.2. Legendre Polynomials 440</p> <p>10.2.1. Expansion of a Function Using Legendre Polynomials 442</p> <p>10.3. Jacobi Polynomials 443</p> <p>10.4. Chebyshev Polynomials 444</p> <p>10.4.1. Chebyshev Polynomials of the First Kind 444</p> <p>10.4.2. Chebyshev Polynomials of the Second Kind 445</p> <p>10.5. Hermite Polynomials 447</p> <p>10.6. Laguerre Polynomials 451</p> <p>10.7. Least-Squares Approximation with Orthogonal Polynomials 453</p> <p>10.8. Orthogonal Polynomials Defined on a Finite Set 455</p> <p>10.9. Applications in Statistics 456</p> <p>10.9.1. Applications of Hermite Polynomials 456</p> <p>10.9.1.1. Approximation of Density Functions and Quantiles of Distributions 456</p> <p>10.9.1.2. Approximation of a Normal Integral 460</p> <p>10.9.1.3. Estimation of Unknown Densities 461</p> <p>10.9.2. Applications of Jacobi and Laguerre Polynomials 462</p> <p>10.9.3. Calculation of Hypergeometric Probabilities Using Discrete Chebyshev Polynomials 462</p> <p>Further Reading and Annotated Bibliography 464</p> <p>Exercises 466</p> <p><b>11. Fourier Series 471</b></p> <p>11.1. Introduction 471</p> <p>11.2. Convergence of Fourier Series 475</p> <p>11.3. Differentiation and Integration of Fourier Series 483</p> <p>11.4. The Fourier Integral 488</p> <p>11.5. Approximation of Functions by Trigonometric Polynomials 495</p> <p>11.5.1. Parseval’s Theorem 496</p> <p>11.6. The Fourier Transform 497</p> <p>11.6.1. Fourier Transform of a Convolution 499</p> <p>11.7. Applications in Statistics 500</p> <p>11.7.1. Applications in Time Series 500</p> <p>11.7.2. Representation of Probability Distributions 501</p> <p>11.7.3. Regression Modeling 504</p> <p>11.7.4. The Characteristic Function 505</p> <p>11.7.4.1. Some Properties of Characteristic Functions 510</p> <p>Further Reading and Annotated Bibliography 510</p> <p>Exercises 512</p> <p><b>12. Approximation of Integrals 517</b></p> <p>12.1. The Trapezoidal Method 517</p> <p>12.1.1. Accuracy of the Approximation 518</p> <p>12.2. Simpson’s Method 521</p> <p>12.3. Newton_Cotes Methods 523</p> <p>12.4. Gaussian Quadrature 524</p> <p>12.5. Approximation over an Infinite Interval 528</p> <p>12.6. The Method of Laplace 531</p> <p>12.7. Multiple Integrals 533</p> <p>12.8. The Monte Carlo Method 535</p> <p>12.8.1. Variation Reduction 537</p> <p>12.8.2. Integrals in Higher Dimensions 540</p> <p>12.9. Applications in Statistics 541</p> <p>12.9.1. The Gauss_Hermite Quadrature 542</p> <p>12.9.2. Minimum Mean Squared Error Quadrature 543</p> <p>12.9.3. Moments of a Ratio of Quadratic Forms 546</p> <p>12.9.4. Laplace’s Approximation in Bayesian Statistics 548</p> <p>12.9.5. Other Methods of Approximating Integrals in Statistics 549</p> <p>Further Reading and Annotated Bibliography 550</p> <p>Exercises 552</p> <p>Appendix. Solutions to Selected Exercises 557</p> <p>General Bibliography 652</p> <p>Index 665</p>
"This is an exceptional book, which I would recommend for anyone beginning a career in statistical research." (<i>Journal of the American Statistical Association</i>, September 2004)
<b>ANDRE I. KHURI</b>, PhD, is a Professor in the Department of Statistics at the University of Florida, Gainesville.
<b>Praise for the First Edition</b> <p>"An enticing approach to the subject. . . . Students contemplating a career in statistics will acquire a valuable understanding of the underlying structure of statistical theory. . . statisticians should consider purchasing it as an additional reference on advanced calculus."<br /> –<i><b>Journal of the American Statistical Association</b></i></p> <p>"This book is indeed a pleasure to read. It is simple to understand what the author is attempting to accomplish, and to follow him as he proceeds. . . . I would highly recommend the book for one's personal collection or suggest your librarian purchase a copy."<br /> –<b><i>Journal of the Operational Research Society</i></b></p> <p>Knowledge of advanced calculus has become imperative to the understanding of the recent advances in statistical methodology. The First Edition of <i>Advanced Calculus with Applications in Statistics</i> has served as a reliable resource for both practicing statisticians and students alike. In light of the tremendous growth of the field of statistics since the book’s publication, André Khuri has reexamined his popular work and substantially expanded it to provide the most up-to-date and comprehensive coverage of the subject.</p> <p>Retaining the original’s much-appreciated application-oriented approach, <i>Advanced Calculus with Applications in Statistics</i>, Second Edition supplies a rigorous introduction to the central themes of advanced calculus suitable for both statisticians and mathematicians alike. The Second Edition adds significant new material on:</p> <ul> <li>Basic topological concepts</li> <li>Orthogonal polynomials</li> <li>Fourier series</li> <li>Approximation of integrals</li> <li>Solutions to selected exercises</li> </ul> <p>The volume's user-friendly text is notable for its end-of-chapter applications, designed to be flexible enough for both statisticians and mathematicians. Its well thought-out solutions to exercises encourage independent study and reinforce mastery of the content. Any statistician, mathematician, or student wishing to master advanced calculus and its applications in statistics will find this new edition a welcome resource.</p>

Diese Produkte könnten Sie auch interessieren:

Statistics for Microarrays
Statistics for Microarrays
von: Ernst Wit, John McClure
PDF ebook
90,99 €