Details

Advanced Bioelectronic Materials


Advanced Bioelectronic Materials


Advanced Material Series 1. Aufl.

von: Ashutosh Tiwari, Hirak K. Patra, Anthony P. F. Turner

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 07.10.2015
ISBN/EAN: 9781118998847
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This book covers the recent advances in the development of bioelectronics systems and their potential application in future biomedical applications starting from system design to signal processing for physiological monitoring, to <i>in situ</i> biosensing.</p> <p><i>Advanced Bioelectronic Materials</i> contributions from distinguished international scholars whose backgrounds mirror the multidisciplinary readership ranging from the biomedical sciences, biosensors and engineering communities with diverse backgrounds, interests and proficiency in academia and industry. The readers will benefit from the widespread coverage of the current literature, <i>state-of-the-art</i> overview of all facets of advanced bioelectronics materials ranging from real time monitoring, <i>in situ</i> diagnostics, <i>in vivo</i> imaging, image-guided therapeutics, biosensors, and translational biomedical devices and personalized monitoring.</p>
<p>Preface xv</p> <p>Part 1: Recent Advances in Bioelectronics 1</p> <p>1 Micro- and Nanoelectrodes in Protein-Based Electrochemical Biosensors for Nanomedicine and Other Applications 3</p> <p>Niina J. Ronkainen</p> <p>1.1 Introduction 4</p> <p>1.2 Microelectrodes 7</p> <p>1.2.1 Electrochemistry and Advantages of Microelectrodes 7</p> <p>1.2.2 Applications, Cleaning, and Performance of Microelectrodes 16</p> <p>1.3 Nanoelectrodes 18</p> <p>1.3.1 Electrochemistry and Advantages of Nanoelectrodes 21</p> <p>1.3.2 Applications and Performance of Nanoelectrodes 23</p> <p>1.4 Integration of the Electronic Transducer, Electrode, and Biological Recognition Components (such as Enzymes) in Nanoscale-Sized Biosensors and Their Clinical Applications 26</p> <p>1.5 Conclusion 27</p> <p>Acknowledgment 28</p> <p>References 28</p> <p>2 Radio-Frequency Biosensors for Label-Free Detection of Biomolecular Binding Systems 35</p> <p>Hee-Jo Lee1, Sang-Gyu Kim, and Jong-Gwan Yook</p> <p>2.1 Overview 35</p> <p>2.2 Introduction 36</p> <p>2.3 Carbon Nanotube-Based RF Biosensor 37</p> <p>2.3.1 Carbon Nanotube 37</p> <p>2.3.2 Fabrications of Interdigital Capacitors with Carbon Nanotube 38</p> <p>2.3.3 Functionalization of Carbon Nanotube 39</p> <p>2.3.4 Measurement and Results 40</p> <p>2.4 Resonator-Based RF Biosensor 40</p> <p>2.4.1 Resonator 40</p> <p>2.4.2 Sample Preparation and Measurement 42</p> <p>2.4.3 Functionalization of Resonator 42</p> <p>2.5 Active System-Based RF Biosensor 45</p> <p>2.5.1 Principle and Configuration of System 45</p> <p>2.5.2 Fabrication of RF Active System with Resonator 46</p> <p>2.5.2.1 Functionalization of Resonator 46</p> <p>2.5.3 Measurement and Result 47</p> <p>2.6 Conclusions 49</p> <p>Abbreviations 51</p> <p>References 52</p> <p>3 Affinity Biosensing: Recent Advances in Surface Plasmon Resonance for Molecular Diagnostics 55</p> <p>S. Scarano, S. Mariani, and M. Minunni</p> <p>3.1 Introduction 56</p> <p>3.2 Artists of the Biorecognition: New Natural and Synthetic Receptors as Sensing Elements 58</p> <p>3.2.1 Antibodies and Their Mimetics 58</p> <p>3.2.2 Nucleic Acids and Analogues 62</p> <p>3.2.3 Living Cells 63</p> <p>3.3 Recent Trends in Bioreceptors Immobilization 65</p> <p>3.4 Trends for Improvements of Analytical Performances in Molecular Diagnostics 69</p> <p>3.4.1 Coupling Nanotechnology to Biosensing 70</p> <p>3.4.2 Microfluidics and Microsystems 76</p> <p>3.4.3 Hyphenation 78</p> <p>3.5 Conclusions 78</p> <p>References 80</p> <p>4 Electropolymerized Materials for Biosensors 89</p> <p>Gennady Evtugyn, Anna Porfi reva and Tibor Hianik</p> <p>4.1 Introduction 89</p> <p>4.2 Electropolymerized Materials Used in Biosensor Assembly 93</p> <p>4.2.1 General Characteristic of Electropolymerization Techniques 93</p> <p>4.2.2 Instrumentation Tools for Monitoring of the Redox-Active Polymers in the Biosensor Assembly 97</p> <p>4.2.3 Redox-Active Polymers Applied in Biosensor Assembly 99</p> <p>4.3 Enzyme Sensors 107</p> <p>4.3.1 PANI-Based Enzyme Sensors 107</p> <p>4.3.2 PPY and Polythiophene-Based Enzyme Sensors 117</p> <p>4.3.3 Enzyme Sensors Based on Other Redox-Active Polymers Obtained by Electropolymerization 127</p> <p>4.3.4 Enzyme Sensors Based on Other Polymers Bearing Redox Groups 135</p> <p>4.4 Immunosensors Based on Redox-Active Polymers 137</p> <p>4.5 DNA Sensors Based on Redox-Active Polymers 149</p> <p>4.5.1 PANI-based DNA Sensors and Aptasensors 149</p> <p>4.5.2 PPY-Based DNA Sensors 153</p> <p>4.5.3 Thiophene Derivatives in the DNA Sensors 157</p> <p>4.5.4 DNA Sensors Based on Polyphenazines and Other Redox-Active Polymers 159</p> <p>4.6 Conclusion 162</p> <p>Acknowledgments 163</p> <p>References 163</p> <p>Part 2 Advanced Nanostructures in Biosensing 187</p> <p>5 Graphene-Based Electrochemical Platform for Biosensor Applications 189</p> <p>Yusoff Norazriena, Alagarsamy Pandikumar, Huang Nay Ming, and Lim Hong Ngee2,3</p> <p>5.1 Introduction 189</p> <p>5.2 Graphene 192</p> <p>5.3 Synthetic Methods for Graphene 195</p> <p>5.4 Properties of Graphene 197</p> <p>5.5 Multi-functional Applications of Graphene 199</p> <p>5.6 Electrochemical Sensor 200</p> <p>Graphene as Promising Materials for Electrochemical Biosensors 201</p> <p>5.6.1 Graphene-Based Modified Electrode for Glucose Sensors 201</p> <p>5.6.2 Graphene-Based Modified Electrode for NADH Sensors 202</p> <p>5.6.3 Graphene-Based Modified Electrode for NO Sensors 204</p> <p>5.6.4 Graphene-Based Modified Electrode for H2O 206</p> <p>5.7 Conclusion and Future Outlooks 207</p> <p>References 208</p> <p>6 Fluorescent Carbon Dots for Bioimaging 215</p> <p>Suresh Kumar Kailasa, Vaibhavkumar N. Mehta1, Nazim Hasan and Hui-Fen Wu</p> <p>6.1 Introduction 215</p> <p>6.2 CDs as Fluorescent Probes for Imaging of Biomolecules and Cells 216</p> <p>6.3 Conclusions and Perspectives 224</p> <p>References 224</p> <p>7 Enzyme Sensors Based on Nanostructured Materials 229</p> <p>Nada F. Atta, Shimaa M. Ali, and Ahmed Galal</p> <p>7.1 Biosensors and Nanotechnology 229</p> <p>7.2 Biosensors Based on Carbon Nanotubes (CNTs) 230</p> <p>7.2.1 Glucose Biosensors 233</p> <p>7.2.2 Cholesterol Biosensors 237</p> <p>7.2.3 Tyrosinase Biosensors 240</p> <p>7.2.4 Urease Biosensors 243</p> <p>7.2.5 Acetylcholinesterase Biosensors 244</p> <p>7.2.6 Horseradish Peroxidase Biosensors 246</p> <p>7.2.7 DNA Biosensors 248</p> <p>7.3 Biosensors Based on Magnetic Nanoparticles 252</p> <p>7.4 Biosensors Based on Quantum Dots 260</p> <p>7.5 Conclusion 267</p> <p>References 268</p> <p>8 Biosensor Based on Chitosan Nanocomposite 277</p> <p>Baoqiang Li, Yinfeng Cheng, Feng Xu, Lei Wang, Daqing Wei, Dechang Jia, Yujie Feng, and Yu Zhou</p> <p>8.1 Introduction 278</p> <p>8.2 Chitosan and Chitosan Nanomaterials 278</p> <p>8.2.1 Physical and Chemical Properties of Chitosan 279</p> <p>8.2.2 Biocompatibility of Chitosan 280</p> <p>8.2.3 Chitosan Nanomaterials 281</p> <p>8.2.3.1 Blending 281</p> <p>8.2.3.2 In Situ Hybridization 282</p> <p>8.2.3.3 Chemical Grafting 285</p> <p>8.3 Application of Chitosan Nanocomposite in Biosensor 285</p> <p>8.3.1 Biosensor Configurations and Bioreceptor Immobilization 285</p> <p>8.3.2 Biosensor Based on Chitosan Nanocomposite 287</p> <p>8.3.2.1 Biosensors Based on Carbon Nanomaterials?Chitosan Nanocomposite 287</p> <p>8.3.2.2 Biosensors Based on Metal and Metal Oxide?Chitosan Nanocomposite 290</p> <p>8.3.2.3 Biosensors Based on Quantum Dots Chitosan Nanocomposite 293</p> <p>8.3.2.4 Biosensors Based on IonicLiquid Chitosan Nanocomposite 293</p> <p>8.4 Emerging Biosensor and Future Perspectives 294</p> <p>Acknowledgments 298</p> <p>References 298</p> <p>Part 3 Systematic Bioelectronic Strategies 309</p> <p>9 Bilayer Lipid Membrane Constructs: A Strategic Technology Evaluation Approach 311</p> <p>Christina G. Siontorou</p> <p>9.1 The Lipid Bilayer Concept and the Membrane Platform 312</p> <p>9.2 Strategic Technology Evaluation: The Approach 318</p> <p>9.3 The Dimensions of the Membrane-Based Technology 319</p> <p>9.4 Technology Dimension 1: Fabrication 322</p> <p>9.4.1 Suspended Lipid Platforms 322</p> <p>9.4.2 Supported Lipid Platforms 327</p> <p>9.4.3 Micro- and Nano-Fabricated Lipid Platforms 331</p> <p>9.5 Technology Dimension 2: Membrane Modelling 333</p> <p>9.6 Technology Dimension 3: Artificial Chemoreception 336</p> <p>9.7 Technology Evaluation 337</p> <p>9.8 Concluding Remarks 339</p> <p>Abbreviations 340</p> <p>References 340</p> <p>10 Carbon and Its Hybrid Composites as Advanced Electrode Materials for Supercapacitors 355</p> <p>S. T. Senthilkumar, K. Vijaya Sankar, J. S. Melo, A. Gedanken and R. Kalai Selvan</p> <p>10.1 Introduction 356</p> <p>10.1.1 Background 356</p> <p>10.2 Principle of Supercapacitor 358</p> <p>10.2.1 Basics of Supercapacitor 358</p> <p>10.2.2 Charge Storage Mechanism of SC 360</p> <p>10.2.2.1 Electric Double-Layer Capacitor (EDLC) 360</p> <p>10.2.2.2 Pseudocapacitors 361</p> <p>10.2.2.3 Electrode Materials for Supercapacitors 364</p> <p>10.3 Activated Carbon and Their Composites 366</p> <p>10.4 Carbon Aerogels and Their Composite Materials 368</p> <p>10.5 Carbon Nanotubes (CNTs) and Their Composite Materials 371</p> <p>10.6 Two-Dimensional Graphene 374</p> <p>10.6.1 Electrochemical Performance of Graphene 375</p> <p>10.6.2 Graphene Composites 376</p> <p>10.6.2.1 Binary Composites 376</p> <p>10.6.2.2 Ternary Hybrid Electrode 378</p> <p>10.6.3 Doping of Graphene with Heteroatom 380</p> <p>10.7 Conclusion and Outlook 381</p> <p>Acknowledgements 382</p> <p>References 382</p> <p>11 Recent Advances of Biosensors in Food Detection Including Genetically Modified Organisms in Food 395</p> <p>T. Varzakas, Georgia-Paraskevi Nikoleli, and Dimitrios P. Nikolelis</p> <p>11.1 Electrochemical Biosensors 396</p> <p>11.2 DNA Biosensors for Detection of GMOs Nanotechnology 400</p> <p>11.3 Aptamers 411</p> <p>11.4 Voltammetric Biosensors 412</p> <p>11.5 Amperometric Biosensors 413</p> <p>11.6 Optical Biosensors 414</p> <p>11.7 Magnetoelastic Biosensors 415</p> <p>11.8 Surface Acoustic Wave (SAW) Biosensors for Odor Detection 415</p> <p>11.9 Quorum Sensing and Toxoflavin Detection 416</p> <p>11.10 Xanthine Biosensors 417</p> <p>11.11 Conclusions and Future Prospects 418</p> <p>Acknowledgments 419</p> <p>References 419</p> <p>12 Numerical Modeling and Calculation of Sensing Parameters of DNA Sensors 429</p> <p>Hediyeh Karimi, Farzaneh Sabbagh, Rasoul Rahmani, and M. T. Ahamdi</p> <p>12.1 Introduction to Graphene 430</p> <p>12.1.1 Electronic Structure of Graphene 431</p> <p>12.1.2 Graphene as a Sensing Element 431</p> <p>12.1.3 DNA Molecules 432</p> <p>12.1.4 DNA Hybridization 432</p> <p>12.1.5 Graphene-Based Field Effect Transistors 434</p> <p>12.1.6 DNA Sensor Structure 435</p> <p>12.1.7 Sensing Mechanism 436</p> <p>12.2 Numerical Modeling 437</p> <p>12.2.1</p> <p>12.2.2 Modeling of the Sensing Parameter (Conductance) Current Voltage (Id?Vg) Characteristics 437<br /><br />Modeling 440<br /><br />12.2.3 Proposed Alpha Model 441<br /><br />12.2.4 Comparison of the Proposed NumericalModel with Experiment 444<br /><br />References 447<br /><br />13 Carbon Nanotubes and Cellulose Acetate Composite for Biomolecular Sensing 453</p> <p>Padmaker Pandey, Anamika Pandey, O. P. Pandey and N. K. Shukla</p> <p>13.1 Introduction 453</p> <p>13.2 Background of the Work 456</p> <p>13.3 Materials and Methodology 459</p> <p>13.3.1 Preparation of Membranes 459</p> <p>13.3.2 Immobilisation of Enzyme 460</p> <p>13.3.3 Assay for Measurement of Enzymatic</p> <p>Reaction 460</p> <p>13.4 Characterisation of Membranes 460</p> <p>13.4.1 Optical Microscope Characterisation 460</p> <p>13.4.2 Scanning Electron Microscope Characterisation 462</p> <p>13.5 pH Measurements Using Different Membranes 462</p> <p>13.5.1 For Un-immobilised Membranes 462</p> <p>13.5.2 For Immobilised Membranes 462</p> <p>13.6 Conclusion 464</p> <p>Reference 465</p> <p>14 Review of the Green Synthesis of Metal/Graphene Composites for Energy Conversion, Sensor, Environmental, and Bioelectronic Applications 467<br /><br />Shude Liu, K.S. Hui, and K.N. Hui</p> <p>14.1 Introduction 468</p> <p>14.2 Metal/Graphene Composites 468</p> <p>14.3 Synthesis Routes of Graphene 469</p> <p>14.3.1 CVD Synthesis of Graphene 469</p> <p>14.3.2 Liquid-Phase Production of Graphene 473</p> <p>14.3.3 Epitaxial Growth of Graphene 476</p> <p>14.4 Green Synthesis Route of Metal/Graphene Composites 478</p> <p>14.4.1 Microwave-Assisted Synthesis of Metal/Graphene Composites 479</p> <p>14.4.2 Non-toxic Reducing Agent 482</p> <p>14.4.3 In Situ Sonication Method 484</p> <p>14.4.4 Photocatalytic Reduction Method 486</p> <p>14.5 Green Application of Metal/Graphene and Doped Graphene Composites 487</p> <p>14.5.1 Energy Storage and Conversion Device 487</p> <p>14.5.2 Electrochemical Sensors 490</p> <p>14.5.3 Wastewater Treatment 491</p> <p>14.5.4 Bioelectronics 492</p> <p>14.6 Conclusion and Future Perspective 496</p> <p>Acknowledgments 497</p> <p>References 497</p>
<p><b>Ashutosh Tiwari </b>is Chairman and Managing Director of Tekidag AB; Group Leader, Advanced Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre at IFM, Linköping University; Editor-in-Chief, <i>Advanced Materials Letters </i>and <i>Advanced Materials Reviews</i>; Secretary General, International Association of Advanced Materials; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linköping University, Sweden. He has more than 400 publications in the field of materials science and nanotechnology with h-index of 30 and has edited/authored over 25 books on advanced materials and technology. He is a founding member of the Advanced Materials World Congress and the Indian Materials Congress.</p> <p><b>Hirak K Patra</b> completed his PhD in 2007 on "<i>Synthetic Nanoforms as Designer and Explorer for Cellular Events"</i> at the University of Calcutta, well known for its fundamental education system with three Nobel Laureates in Asia. He moved to the Applied Physics Division of Linköping University with the prestigious Integrative Regenerative Medicine fellowship at Sweden to work with the Prof. Anthony Turner at his Biosensors and Bioelectronics Center. He has published 17 articles in top journals, 4 patents, and has been honored with several "Young Scientist" awards globally.</p>

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €