Details

Adaptive Signal Processing


Adaptive Signal Processing

Next Generation Solutions
Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control, Band 55 1. Aufl.

von: Tülay Adali, Simon Haykin

136,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 25.06.2010
ISBN/EAN: 9780470575741
Sprache: englisch
Anzahl Seiten: 424

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Leading experts present the latest research results in adaptive signal processing</b> <p>Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. <i>Adaptive Signal Processing</i> presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension.</p> <ul> <li> <p>Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions</p> </li> <li> <p>Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity</p> </li> <li> <p>Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material</p> </li> <li> <p>Contains contributions from acknowledged leaders in the field</p> </li> </ul> <p><i>Adaptive Signal Processing</i> is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.</p>
<p>Preface xi</p> <p>Contributors xv</p> <p><b>Chapter 1 Complex-Valued Adaptive Signal Processing 1</b></p> <p>1.1 Introduction 1</p> <p>1.1.1 Why Complex-Valued Signal Processing 3</p> <p>1.1.2 Outline of the Chapter 5</p> <p>1.2 Preliminaries 6</p> <p>1.2.1 Notation 6</p> <p>1.2.2 Efficient Computation of Derivatives in the Complex Domain 9</p> <p>1.2.3 Complex-to-Real and Complex-to-Complex Mappings 17</p> <p>1.2.4 Series Expansions 20</p> <p>1.2.5 Statistics of Complex-Valued Random Variables and Random Processes 24</p> <p>1.3 Optimization in the Complex Domain 31</p> <p>1.3.1 Basic Optimization Approaches in RN 31</p> <p>1.3.2 Vector Optimization in CN 34</p> <p>1.3.3 Matrix Optimization in CN 37</p> <p>1.3.4 Newton-Variant Updates 38</p> <p>1.4 Widely Linear Adaptive Filtering 40</p> <p>1.4.1 Linear and Widely Linear Mean-Square Error Filter 41</p> <p>1.5 Nonlinear Adaptive Filtering with Multilayer Perceptrons 47</p> <p>1.5.1 Choice of Activation Function for the MLP Filter 48</p> <p>1.5.2 Derivation of Back-Propagation Updates 55</p> <p>1.6 Complex Independent Component Analysis 58</p> <p>1.6.1 Complex Maximum Likelihood 59</p> <p>1.6.2 Complex Maximization of Non-Gaussianity 64</p> <p>1.6.3 Mutual Information Minimization: Connections to ML and MN 66</p> <p>1.6.4 Density Matching 67</p> <p>1.6.5 Numerical Examples 71</p> <p>1.7 Summary 74</p> <p>1.8 Acknowledgment 76</p> <p>1.9 Problems 76</p> <p>References 79</p> <p><b>Chapter 2 Robust Estimation Techniques for Complex-Valued Random Vectors 87</b></p> <p>2.1 Introduction 87</p> <p>2.1.1 Signal Model 88</p> <p>2.1.2 Outline of the Chapter 90</p> <p>2.2 Statistical Characterization of Complex Random Vectors 91</p> <p>2.2.1 Complex Random Variables 91</p> <p>2.2.2 Complex Random Vectors 93</p> <p>2.3 Complex Elliptically Symmetric (CES) Distributions 95</p> <p>2.3.1 Definition 96</p> <p>2.3.2 Circular Case 98</p> <p>2.3.3 Testing the Circularity Assumption 99</p> <p>2.4 Tools to Compare Estimators 102</p> <p>2.4.1 Robustness and Influence Function 102</p> <p>2.4.2 Asymptotic Performance of an Estimator 106</p> <p>2.5 Scatter and Pseudo-Scatter Matrices 107</p> <p>2.5.1 Background and Motivation 107</p> <p>2.5.2 Definition 108</p> <p>2.5.3 M-Estimators of Scatter 110</p> <p>2.6 Array Processing Examples 114</p> <p>2.6.1 Beamformers 114</p> <p>2.6.2 Subspace Methods 115</p> <p>2.6.3 Estimating the Number of Sources 118</p> <p>2.6.4 Subspace DOA Estimation for Noncircular Sources 120</p> <p>2.7 MVDR Beamformers Based on M-Estimators 121</p> <p>2.7.1 The Influence Function Study 123</p> <p>2.8 Robust ICA 128</p> <p>2.8.1 The Class of DOGMA Estimators 129</p> <p>2.8.2 The Class of GUT Estimators 132</p> <p>2.8.3 Communications Example 134</p> <p>2.9 Conclusion 137</p> <p>2.10 Problems 137</p> <p>References 138</p> <p><b>Chapter 3 Turbo Equalization 143</b></p> <p>3.1 Introduction 143</p> <p>3.2 Context 144</p> <p>3.3 Communication Chain 145</p> <p>3.4 Turbo Decoder: Overview 147</p> <p>3.4.1 Basic Properties of Iterative Decoding 151</p> <p>3.5 Forward-Backward Algorithm 152</p> <p>3.5.1 With Intersymbol Interference 160</p> <p>3.6 Simplified Algorithm: Interference Canceler 163</p> <p>3.7 Capacity Analysis 168</p> <p>3.8 Blind Turbo Equalization 173</p> <p>3.8.1 Differential Encoding 179</p> <p>3.9 Convergence 182</p> <p>3.9.1 Bit Error Probability 187</p> <p>3.9.2 Other Encoder Variants 190</p> <p>3.9.3 EXIT Chart for Interference Canceler 192</p> <p>3.9.4 Related Analyses 194</p> <p>3.10 Multichannel and Multiuser Settings 195</p> <p>3.10.1 Forward-Backward Equalizer 196</p> <p>3.10.2 Interference Canceler 197</p> <p>3.10.3 Multiuser Case 198</p> <p>3.11 Concluding Remarks 199</p> <p>3.12 Problems 200</p> <p>References 206</p> <p><b>Chapter 4 Subspace Tracking for Signal Processing 211</b></p> <p>4.1 Introduction 211</p> <p>4.2 Linear Algebra Review 213</p> <p>4.2.1 Eigenvalue Value Decomposition 213</p> <p>4.2.2 QR Factorization 214</p> <p>4.2.3 Variational Characterization of Eigenvalues Eigenvectors of Real Symmetric Matrices 215</p> <p>4.2.4 Standard Subspace Iterative Computational Techniques 216</p> <p>4.2.5 Characterization of the Principal Subspace of a Covariance Matrix from the Minimization of a Mean Square Error 218</p> <p>4.3 Observation Model and Problem Statement 219</p> <p>4.3.1 Observation Model 219</p> <p>4.3.2 Statement of the Problem 220</p> <p>4.4 Preliminary Example: Oja’s Neuron 221</p> <p>4.5 Subspace Tracking 223</p> <p>4.5.1 Subspace Power-Based Methods 224</p> <p>4.5.2 Projection Approximation-Based Methods 230</p> <p>4.5.3 Additional Methodologies 232</p> <p>4.6 Eigenvectors Tracking 233</p> <p>4.6.1 Rayleigh Quotient-Based Methods 234</p> <p>4.6.2 Eigenvector Power-Based Methods 235</p> <p>4.6.3 Projection Approximation-Based Methods 240</p> <p>4.6.4 Additional Methodologies 240</p> <p>4.6.5 Particular Case of Second-Order Stationary Data 242</p> <p>4.7 Convergence and Performance Analysis Issues 243</p> <p>4.7.1 A Short Review of the ODE Method 244</p> <p>4.7.2 A Short Review of a General Gaussian Approximation Result 246</p> <p>4.7.3 Examples of Convergence and Performance Analysis 248</p> <p>4.8 Illustrative Examples 256</p> <p>4.8.1 Direction of Arrival Tracking 257</p> <p>4.8.2 Blind Channel Estimation and Equalization 258</p> <p>4.9 Concluding Remarks 260</p> <p>4.10 Problems 260</p> <p>References 266</p> <p><b>Chapter 5 Particle Filtering 271</b></p> <p>5.1 Introduction 272</p> <p>5.2 Motivation for Use of Particle Filtering 274</p> <p>5.3 The Basic Idea 278</p> <p>5.4 The Choice of Proposal Distribution and Resampling 289</p> <p>5.4.1 Choice of Proposal Distribution 290</p> <p>5.4.2 Resampling 291</p> <p>5.5 Some Particle Filtering Methods 295</p> <p>5.5.1 SIR Particle Filtering 295</p> <p>5.5.2 Auxiliary Particle Filtering 297</p> <p>5.5.3 Gaussian Particle Filtering 301</p> <p>5.5.4 Comparison of the Methods 302</p> <p>5.6 Handling Constant Parameters 305</p> <p>5.6.1 Kernel-Based Auxiliary Particle Filter 306</p> <p>5.6.2 Density-Assisted Particle Filter 308</p> <p>5.7 Rao–Blackwellization 310</p> <p>5.8 Prediction 314</p> <p>5.9 Smoothing 316</p> <p>5.10 Convergence Issues 320</p> <p>5.11 Computational Issues and Hardware Implementation 323</p> <p>5.12 Acknowledgments 324</p> <p>5.13 Exercises 325</p> <p>References 327</p> <p><b>Chapter 6 Nonlinear Sequential State Estimation for Solving Pattern-Classification Problems 333</b></p> <p>6.1 Introduction 333</p> <p>6.2 Back-Propagation and Support Vector Machine-Learning Algorithms: Review 334</p> <p>6.2.1 Back-Propagation Learning 334</p> <p>6.2.2 Support Vector Machine 337</p> <p>6.3 Supervised Training Framework of MLPs Using Nonlinear Sequential State Estimation 340</p> <p>6.4 The Extended Kalman Filter 341</p> <p>6.4.1 The EKF Algorithm 344</p> <p>6.5 Experimental Comparison of the Extended Kalman Filtering Algorithm with the Back-Propagation and Support Vector Machine Learning Algorithms 344</p> <p>6.6 Concluding Remarks 347</p> <p>6.7 Problems 348</p> <p>References 348</p> <p><b>Chapter 7 Bandwidth Extension of Telephony Speech 349</b></p> <p>7.1 Introduction 349</p> <p>7.2 Organization of the Chapter 352</p> <p>7.3 Nonmodel-Based Algorithms for Bandwidth Extension 352</p> <p>7.3.1 Oversampling with Imaging 353</p> <p>7.3.2 Application of Nonlinear Characteristics 353</p> <p>7.4 Basics 354</p> <p>7.4.1 Source-Filter Model 355</p> <p>7.4.2 Parametric Representations of the Spectral Envelope 358</p> <p>7.4.3 Distance Measures 362</p> <p>7.5 Model-Based Algorithms for Bandwidth Extension 364</p> <p>7.5.1 Generation of the Excitation Signal 365</p> <p>7.5.2 Vocal Tract Transfer Function Estimation 369</p> <p>7.6 Evaluation of Bandwidth Extension Algorithms 383</p> <p>7.6.1 Objective Distance Measures 383</p> <p>7.6.2 Subjective Distance Measures 385</p> <p>7.7 Conclusion 388</p> <p>7.8 Problems 388</p> <p>References 390</p> <p>Index 393</p>
<b>TÜLAY ADALI, PhD,</b> is Professor of Electrical Engineering and Director of the Machine Learning for Signal Processing Laboratory at the University of Maryland, Baltimore County. Her research interests are in statistical and adaptive signal processing, with emphasis on nonlinear and complex-valued signal processing, and applications in biomedical data analysis and communications. <p><b>Simon Haykin, PhD,</b> is Distinguished University Professor and Director of the Cognitive Systems Laboratory in the Faculty of Engineering at McMaster University. A world-renowned authority on adaptive and learning systems, Dr. Haykin has pioneered signal-processing techniques and systems for radar and communication applications, culminating in the study of cognitive dynamic systems, which has become his research passion.</p>
<b>Leading experts present the latest research results in adaptive signal processing</b> <p>Recent developments in signal processing have made it clear that significant performance gains can be achieved beyond those achievable using standard adaptive filtering approaches. <i>Adaptive Signal Processing</i> presents the next generation of algorithms that will produce these desired results, with an emphasis on important applications and theoretical advancements. This highly unique resource brings together leading authorities in the field writing on the key topics of significance, each at the cutting edge of its own area of specialty. It begins by addressing the problem of optimization in the complex domain, fully developing a framework that enables taking full advantage of the power of complex-valued processing. Then, the challenges of multichannel processing of complex-valued signals are explored. This comprehensive volume goes on to cover Turbo processing, tracking in the subspace domain, nonlinear sequential state estimation, and speech-bandwidth extension.</p> <ul> <li> <p>Examines the seven most important topics in adaptive filtering that will define the next-generation adaptive filtering solutions</p> </li> <li> <p>Introduces the powerful adaptive signal processing methods developed within the last ten years to account for the characteristics of real-life data: non-Gaussianity, non-circularity, non-stationarity, and non-linearity</p> </li> <li> <p>Features self-contained chapters, numerous examples to clarify concepts, and end-of-chapter problems to reinforce understanding of the material</p> </li> <li> <p>Contains contributions from acknowledged leaders in the field</p> </li> <li> <p>Includes a Solutions Manual for instructors</p> </li> </ul> <p><i>Adaptive Signal Processing</i> is an invaluable tool for graduate students, researchers, and practitioners working in the areas of signal processing, communications, controls, radar, sonar, and biomedical engineering.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €