Details

Adaptive Optics for Vision Science


Adaptive Optics for Vision Science

Principles, Practices, Design, and Applications
Wiley Series in Microwave and Optical Engineering, Band 171 1. Aufl.

von: Jason Porter, Hope Queener, Julianna Lin, Karen Thorn, Abdul A. S. Awwal

206,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 12.06.2006
ISBN/EAN: 9780471914648
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Leading experts present the latest technology and applications in adaptive optics for vision science<br /> <br /> <br /> Featuring contributions from the foremost researchers in the field, Adaptive Optics for Vision Science is the first book devoted entirely to providing the fundamentals of adaptive optics along with its practical applications in vision science. The material for this book stems from collaborations fostered by the Center for Adaptive Optics, a consortium of more than thirty universities, government laboratories, and corporations.<br /> <br /> Although the book is written primarily for researchers in vision science and ophthalmology, the field of adaptive optics has strong roots in astronomy. Researchers in both fields share this technology and, for this reason, the book includes chapters by both astronomers and vision scientists.<br /> <br /> Following the introduction, chapters are divided into the following sections:<br /> * Wavefront Measurement and Correction<br /> * Retinal Imaging Applications<br /> * Vision Correction Applications<br /> * Design Examples<br /> <br /> Readers will discover the remarkable proliferation of new applications of wavefront-related technologies developed for the human eye. For example, the book explores how wavefront sensors offer the promise of a new generation of vision correction methods that can deal with higher order aberrations beyond defocus and astigmatism, and how adaptive optics can produce images of the living retina with unprecedented resolution.<br /> <br /> An appendix includes the Optical Society of America's Standards for Reporting Optical Aberrations. A glossary of terms and a symbol table are also included.<br /> <br /> Adaptive Optics for Vision Science arms engineers, scientists, clinicians, and students with the basic concepts, engineering tools, and techniques needed to master adaptive optics applications in vision science and ophthalmology. Moreover, readers will discover the latest thinking and findings from the leading innovators in the field.
<p>FOREWORD xvii</p> <p>ACKNOWLEDGMENTS xxi</p> <p>CONTRIBUTORS xxiii</p> <p><b>PART ONE INTRODUCTION 1</b></p> <p><b>1 Development of Adaptive Optics in Vision Science and Ophthalmology 3</b><br /><i>David R. Williams and Jason Porter</i></p> <p>1.1 Brief History of Aberration Correction in the Human Eye 3</p> <p>1.1.1 Vision Correction 3</p> <p>1.1.2 Retinal Imaging 5</p> <p>1.2 Applications of Ocular Adaptive Optics 9</p> <p>1.2.1 Vision Correction 9</p> <p>1.2.2 Retinal Imaging 11</p> <p><b>PART TWO WAVEFRONT MEASUREMENT AND CORRECTION 31</b></p> <p><b>2 Aberration Structure of the Human Eye 33</b><br /><i>Pablo Artal, Juan M. Bueno, Antonio Guirao, and Pedro M. Prieto</i></p> <p>2.1 Introduction 33</p> <p>2.2 Location of Monochromatic Aberrations Within the Eye 34</p> <p>2.3 Temporal Properties of Aberrations: Accommodation and Aging 40</p> <p>2.3.1 Effect of Accommodation on Aberrations and Their Correction 40</p> <p>2.3.2 Aging and Aberrations 42</p> <p>2.4 Chromatic Aberrations 43</p> <p>2.4.1 Longitudinal Chromatic Aberration 44</p> <p>2.4.2 Transverse Chromatic Aberration 45</p> <p>2.4.3 Interaction Between Monochromatic and Chromatic Aberrations 45</p> <p>2.5 Off-Axis Aberrations 46</p> <p>2.5.1 Peripheral Refraction 47</p> <p>2.5.2 Monochromatic and Chromatic Off-Axis Aberrations 48</p> <p>2.5.3 Monochromatic Image Quality and Correction of Off-Axis Aberrations 51</p> <p>2.6 Statistics of Aberrations in Normal Populations 52</p> <p>2.7 Effects of Polarization and Scatter 53</p> <p>2.7.1 Impact of Polarization on the Ocular Aberrations 53</p> <p>2.7.2 Intraocular Scatter 55</p> <p><b>3 Wavefront Sensing and Diagnostic Uses 63</b><br /><i>Geunyoung Yoon</i></p> <p>3.1 Wavefront Sensors for the Eye 63</p> <p>3.1.1 Spatially Resolved Refractometer 65</p> <p>3.1.2 Laser Ray Tracing 65</p> <p>3.1.3 Shack–Hartmann Wavefront Sensor 66</p> <p>3.2 Optimizing a Shack–Hartmann Wavefront Sensor 68</p> <p>3.2.1 Number of Lenslets Versus Number of Zernike Coefficients 68</p> <p>3.2.2 Trade-off Between Dynamic Range and Measurement Sensitivity 71</p> <p>3.2.3 Focal Length of the Lenslet Array 73</p> <p>3.2.4 Increasing the Dynamic Range of a Wavefront Sensor Without Losing Measurement Sensitivity 74</p> <p>3.3 Calibration of a Wavefront Sensor 75</p> <p>3.3.1 Reconstruction Algorithm 76</p> <p>3.3.2 System Aberrations 77</p> <p>3.4 Summary 79</p> <p><b>4 Wavefront Correctors for Vision Science 83</b><br /><i>Nathan Doble and Donald T. Miller</i></p> <p>4.1 Introduction 83</p> <p>4.2 Principal Components of an AO System 84</p> <p>4.3 Wavefront Correctors 86</p> <p>4.4 Wavefront Correctors Used in Vision Science 88</p> <p>4.4.1 Macroscopic Discrete Actuator Deformable Mirrors 89</p> <p>4.4.2 Liquid Crystal Spatial Light Modulators 90</p> <p>4.4.3 Bimorph Mirrors 91</p> <p>4.4.4 Microelectromechanical Systems 92</p> <p>4.5 Performance Predictions for Various Types of Wavefront Correctors 95</p> <p>4.5.1 Description of Two Large Populations 98</p> <p>4.5.2 Required Corrector Stroke 99</p> <p>4.5.3 Discrete Actuator Deformable Mirrors 101</p> <p>4.5.4 Piston-Only Segmented Mirrors 106</p> <p>4.5.5 Piston/Tip/Tilt Segmented Mirrors 107</p> <p>4.5.6 Membrane and Bimorph Mirrors 109</p> <p>4.6 Summary and Conclusion 111</p> <p><b>5 Control Algorithms 119</b><br /><i>Li Chen</i></p> <p>5.1 Introduction 119</p> <p>5.2 Configuration of Lenslets and Actuators 119</p> <p>5.3 Influence Function Measurement 122</p> <p>5.4 Spatial Control Command of the Wavefront Corrector 124</p> <p>5.4.1 Control Matrix for the Direct Slope Algorithm 124</p> <p>5.4.2 Modal Wavefront Correction 127</p> <p>5.4.3 Wave Aberration Generator 127</p> <p>5.5 Temporal Control Command of the Wavefront Corrector 128</p> <p>5.5.1 Open-Loop Control 128</p> <p>5.5.2 Closed-Loop Control 129</p> <p>5.5.3 Transfer Function of an Adaptive Optics System 130</p> <p><b>6 Adaptive Optics Software for Vision Research 139</b><br /><i>Ben Singer</i></p> <p>6.1 Introduction 139</p> <p>6.2 Image Acquisition 140</p> <p>6.2.1 Frame Rate 140</p> <p>6.2.2 Synchronization 140</p> <p>6.2.3 Pupil Imaging 141</p> <p>6.3 Measuring Wavefront Slope 142</p> <p>6.3.1 Setting Regions of Interest 142</p> <p>6.3.2 Issues Related to Image Coordinates 143</p> <p>6.3.3 Adjusting for Image Quality 143</p> <p>6.3.4 Measurement Pupils 143</p> <p>6.3.5 Preparing the Image 143</p> <p>6.3.6 Centroiding 144</p> <p>6.4 Aberration Recovery 144</p> <p>6.4.1 Principles 144</p> <p>6.4.2 Implementation 145</p> <p>6.4.3 Recording Aberration 147</p> <p>6.4.4 Displaying a Running History of RMS 147</p> <p>6.4.5 Displaying an Image of the Reconstructed Wavefront 148</p> <p>6.5 Correcting Aberrations 149</p> <p>6.5.1 Recording Influence Functions 149</p> <p>6.5.2 Applying Actuator Voltages 150</p> <p>6.6 Application-Dependent Considerations 150</p> <p>6.6.1 One-Shot Retinal Imaging 150</p> <p>6.6.2 Synchronizing to Display Stimuli 150</p> <p>6.6.3 Selective Correction 151</p> <p>6.7 Conclusion 151</p> <p>6.7.1 Making Programmers Happy 151</p> <p>6.7.2 Making Operators Happy 151</p> <p>6.7.3 Making Researchers Happy 152</p> <p>6.7.4 Making Subjects Happy 152</p> <p>6.7.5 Flexibility in the Middle 153</p> <p><b>7 Adaptive Optics System Assembly and Integration 155</b><br /><i>Brian J. Bauman and Stephen K. Eisenbies</i></p> <p>7.1 Introduction 155</p> <p>7.2 First-Order Optics of the AO System 156</p> <p>7.3 Optical Alignment 157</p> <p>7.3.1 Understanding Penalties for Misalignments 158</p> <p>7.3.2 Optomechanics 159</p> <p>7.3.3 Common Alignment Practices 163</p> <p>7.3.4 Sample Procedure for Offl ine Alignment 170</p> <p>7.4 AO System Integration 174</p> <p>7.4.1 Overview 174</p> <p>7.4.2 Measure the Wavefront Error of Optical Components 175</p> <p>7.4.3 Qualify the DM 175</p> <p>7.4.4 Qualify the Wavefront Sensor 177</p> <p>7.4.5 Check Wavefront Reconstruction 180</p> <p>7.4.6 Assemble the AO System 181</p> <p>7.4.7 Boresight FOVs 182</p> <p>7.4.8 Perform DM-to-WS Registration 183</p> <p>7.4.9 Measure the Slope Infl uence Matrix and Generate Control Matrices 184</p> <p>7.4.10 Close the Loop and Check the System Gain 184</p> <p>7.4.11 Calibrate the Reference Centroids 185</p> <p><b>8 System Performance Characterization 189</b><br /><i>Marcos A. van Dam</i></p> <p>8.1 Introduction 189</p> <p>8.2 Strehl Ratio 189</p> <p>8.3 Calibration Error 191</p> <p>8.4 Fitting Error 192</p> <p>8.5 Measurement and Bandwidth Error 194</p> <p>8.5.1 Modeling the Dynamic Behavior of the AO System 194</p> <p>8.5.2 Computing Temporal Power Spectra from the Diagnostics 196</p> <p>8.5.3 Measurement Noise Errors 198</p> <p>8.5.4 Bandwidth Error 199</p> <p>8.5.5 Discussion 200</p> <p>8.6 Addition of Wavefront Error Terms 200</p> <p><b>PART THREE RETINAL IMAGING APPLICATIONS 203</b></p> <p><b>9 Fundamental Properties of the Retina 205</b><br /><i>Ann E. Elsner</i></p> <p>9.1 Shape of the Retina 206</p> <p>9.2 Two Blood Supplies 209</p> <p>9.3 Layers of the Fundus 210</p> <p>9.4 Spectra 218</p> <p>9.5 Light Scattering 220</p> <p>9.6 Polarization 225</p> <p>9.7 Contrast from Directly Backscattered or Multiply Scattered Light 228</p> <p>9.8 Summary 230</p> <p><b>10 Strategies for High-Resolution Retinal Imaging 235</b><br /><i>Austin Roorda, Donald T. Miller, and Julian Christou</i></p> <p>10.1 Introduction 235</p> <p>10.2 Conventional Imaging 236</p> <p>10.2.1 Resolution Limits of Conventional Imaging Systems 237</p> <p>10.2.2 Basic System Design 237</p> <p>10.2.3 Optical Components 239</p> <p>10.2.4 Wavefront Sensing 240</p> <p>10.2.5 Imaging Light Source 242</p> <p>10.2.6 Field Size 244</p> <p>10.2.7 Science Camera 246</p> <p>10.2.8 System Operation 246</p> <p>10.3 Scanning Laser Imaging 247</p> <p>10.3.1 Resolution Limits of Confocal Scanning Laser Imaging Systems 249</p> <p>10.3.2 Basic Layout of an AOSLO 249</p> <p>10.3.3 Light Path 249</p> <p>10.3.4 Light Delivery 251</p> <p>10.3.5 Wavefront Sensing and Compensation 252</p> <p>10.3.6 Raster Scanning 253</p> <p>10.3.7 Light Detection 254</p> <p>10.3.8 Frame Grabbing 255</p> <p>10.3.9 SLO System Operation 255</p> <p>10.4 OCT Ophthalmoscope 256</p> <p>10.4.1 OCT Principle of Operation 257</p> <p>10.4.2 Resolution Limits of OCT 259</p> <p>10.4.3 Light Detection 262</p> <p>10.4.4 Basic Layout of AO-OCT Ophthalmoscopes 264</p> <p>10.4.5 Optical Components 266</p> <p>10.4.6 Wavefront Sensing 266</p> <p>10.4.7 Imaging Light Source 267</p> <p>10.4.8 Field Size 267</p> <p>10.4.9 Impact of Speckle and Chromatic Aberrations 268</p> <p>10.5 Common Issues for all AO Imaging Systems 271</p> <p>10.5.1 Light Budget 271</p> <p>10.5.2 Human Factors 272</p> <p>10.5.3 Refraction 272</p> <p>10.5.4 Imaging Time 276</p> <p>10.6 Image Postprocessing 276</p> <p>10.6.1 Introduction 276</p> <p>10.6.2 Convolution 276</p> <p>10.6.3 Linear Deconvolution 278</p> <p>10.6.4 Nonlinear Deconvolution 279</p> <p>10.6.5 Uses of Deconvolution 283</p> <p>10.6.6 Summary 283</p> <p><b>PART FOUR VISION CORRECTION APPLICATIONS 289</b></p> <p><b>11 Customized Vision Correction Devices 291</b><br /><i>Ian Cox</i></p> <p>11.1 Contact Lenses 291</p> <p>11.1.1 Rigid or Soft Contact Lenses for Customized Correction? 293</p> <p>11.1.2 Design Considerations—More Than Just Optics 295</p> <p>11.1.3 Measurement—The Eye, the Lens, or the System? 297</p> <p>11.1.4 Customized Contact Lenses in a Disposable World 298</p> <p>11.1.5 Manufacturing Issues—Can the Correct Surfaces Be Made? 300</p> <p>11.1.6 Who Will Benefit? 301</p> <p>11.1.7 Summary 304</p> <p>11.2 Intraocular Lenses 304</p> <p>11.2.1 Which Aberrations—The Cornea, the Lens, or the Eye? 305</p> <p>11.2.2 Correcting Higher Order Aberrations—Individual Versus Population Average 306</p> <p>11.2.3 Summary 308</p> <p><b>12 Customized Corneal Ablation 311</b><br /><i>Scott M. MacRae</i></p> <p>12.1 Introduction 311</p> <p>12.2 Basics of Laser Refractive Surgery 312</p> <p>12.3 Forms of Customization 317</p> <p>12.3.1 Functional Customization 317</p> <p>12.3.2 Anatomical Customization 319</p> <p>12.3.3 Optical Customization 320</p> <p>12.4 The Excimer Laser Treatment 321</p> <p>12.5 Biomechanics and Variable Ablation Rate 322</p> <p>12.6 Effect of the LASIK Flap 324</p> <p>12.7 Wavefront Technology and Higher Order Aberration Correction 325</p> <p>12.8 Clinical Results of Excimer Laser Ablation 325</p> <p>12.9 Summary 326</p> <p><b>13 From Wavefronts To Refractions 331</b><br /><i>Larry N. Thibos</i></p> <p>13.1 Basic Terminology 331</p> <p>13.1.1 Refractive Error and Refractive Correction 331</p> <p>13.1.2 Lens Prescriptions 332</p> <p>13.2 Goal of Refraction 334</p> <p>13.2.1 Definition of the Far Point 334</p> <p>13.2.2 Refraction by Successive Elimination 335</p> <p>13.2.3 Using Depth of Focus to Expand the Range of Clear Vision 336</p> <p>13.3 Methods for Estimating the Monochromatic Refraction from an Aberration Map 337</p> <p>13.3.1 Refraction Based on Equivalent Quadratic 339</p> <p>13.3.2 Virtual Refraction Based on Maximizing Optical Quality 339</p> <p>13.3.3 Numerical Example 353</p> <p>13.4 Ocular Chromatic Aberration and the Polychromatic Refraction 354</p> <p>13.4.1 Polychromatic Wavefront Metrics 356</p> <p>13.4.2 Polychromatic Point Image Metrics 357</p> <p>13.4.3 Polychromatic Grating Image Metrics 357</p> <p>13.5 Experimental Evaluation of Proposed Refraction Methods 358</p> <p>13.5.1 Monochromatic Predictions 358</p> <p>13.5.2 Polychromatic Predictions 359</p> <p>13.5.3 Conclusions 360</p> <p><b>14 Visual Psychophysics With Adaptive Optics 363</b><br /><i>Joseph L. Hardy, Peter B. Delahunt, and John S. Werner</i></p> <p>14.1 Psychophysical Functions 364</p> <p>14.1.1 Contrast Sensitivity Functions 364</p> <p>14.1.2 Spectral Efficiency Functions 368</p> <p>14.2 Psychophysical Methods 370</p> <p>14.2.1 Threshold 370</p> <p>14.2.2 Signal Detection Theory 371</p> <p>14.2.3 Detection, Discrimination, and Identification Thresholds 374</p> <p>14.2.4 Procedures for Estimating a Threshold 375</p> <p>14.2.5 Psychometric Functions 377</p> <p>14.2.6 Selecting Stimulus Values 378</p> <p>14.3 Generating the Visual Stimulus 380</p> <p>14.3.1 General Issues Concerning Computer-Controlled Displays 381</p> <p>14.3.2 Types of Computer-Controlled Displays 384</p> <p>14.3.3 Accurate Stimulus Generation 386</p> <p>14.3.4 Display Characterization 388</p> <p>14.3.5 Maxwellian-View Optical Systems 390</p> <p>14.3.6 Other Display Options 390</p> <p>14.4 Conclusions 391</p> <p><b>PART FIVE DESIGN EXAMPLES 395</b></p> <p><b>15 Rochester Adaptive Optics Ophthalmoscope 397</b><br /><i>Heidi Hofer, Jason Porter, Geunyoung Yoon, Li Chen, Ben Singer, and David R. Williams</i></p> <p>15.1 Introduction 397</p> <p>15.2 Optical Layout 398</p> <p>15.2.1 Wavefront Measurement and Correction 398</p> <p>15.2.2 Retinal Imaging: Light Delivery and Image Acquisition 403</p> <p>15.2.3 Visual Psychophysics Stimulus Display 404</p> <p>15.3 Control Algorithm 405</p> <p>15.4 Wavefront Correction Performance 406</p> <p>15.4.1 Residual RMS Errors, Wavefronts, and Point Spread Functions 406</p> <p>15.4.2 Temporal Performance: RMS Wavefront Error 407</p> <p>15.5 Improvement in Retinal Image Quality 409</p> <p>15.6 Improvement in Visual Performance 410</p> <p>15.7 Current System Limitations 412</p> <p>15.8 Conclusion 414</p> <p><b>16 Design of an Adaptive Optics Scanning Laser Ophthalmoscope 417</b><br /><i>Krishnakumar Venkateswaran, Fernando Romero-Borja, and Austin Roorda</i></p> <p>16.1 Introduction 417</p> <p>16.2 Light Delivery 419</p> <p>16.3 Raster Scanning 419</p> <p>16.4 Adaptive Optics in the SLO 420</p> <p>16.4.1 Wavefront Sensing 420</p> <p>16.4.2 Wavefront Compensation Using the Deformable Mirror 421</p> <p>16.4.3 Mirror Control Algorithm 421</p> <p>16.4.4 Nonnulling Operation for Axial Sectioning in a Closed-Loop AO System 423</p> <p>16.5 Optical Layout for the AOSLO 425</p> <p>16.6 Image Acquisition 426</p> <p>16.7 Software Interface for the AOSLO 429</p> <p>16.8 Calibration and Testing 431</p> <p>16.8.1 Defocus Calibration 431</p> <p>16.8.2 Linearity of the Detection Path 432</p> <p>16.8.3 Field Size Calibration 432</p> <p>16.9 AO Performance Results 432</p> <p>16.9.1 AO Compensation 432</p> <p>16.9.2 Axial Resolution of the Theoretically Modeled AOSLO and Experimental Results 434</p> <p>16.10 Imaging Results 438</p> <p>16.10.1 Hard Exudates and Microaneurysms in a Diabetic’s Retina 438</p> <p>16.10.2 Blood Flow Measurements 439</p> <p>16.10.3 Solar Retinopathy 440</p> <p>16.11 Discussions on Improving Performance of the AOSLO 441</p> <p>16.11.1 Size of the Confocal Pinhole 441</p> <p>16.11.2 Pupil and Retinal Stabilization 443</p> <p>16.11.3 Improvements to Contrast 443</p> <p><b>17 Indiana University AO-OCT System 447</b><br /><i>Yan Zhang, Jungtae Rha, Ravi S. Jonnal, and Donald T. Miller</i></p> <p>17.1 Introduction 447</p> <p>17.2 Description of the System 448</p> <p>17.3 Experimental Procedures 453</p> <p>17.3.1 Preparation of Subjects 453</p> <p>17.3.2 Collection of Retinal Images 454</p> <p>17.4 AO Performance 455</p> <p>17.4.1 Image Sharpening 457</p> <p>17.4.2 Temporal Power Spectra 458</p> <p>17.4.3 Power Rejection Curve of the Closed-Loop AO System 459</p> <p>17.4.4 Time Stamping of SHWS Measurements 460</p> <p>17.4.5 Extensive Logging Capabilities 461</p> <p>17.4.6 Improving Corrector Stability 461</p> <p>17.5 Example Results with AO Conventional Flood-Illuminated Imaging 461</p> <p>17.6 Example Results With AO Parallel SD-OCT Imaging 463</p> <p>17.6.1 Parallel SD-OCT Sensitivity and Axial Resolution 463</p> <p>17.6.2 AO Parallel SD-OCT Imaging 466</p> <p>17.7 Conclusion 474</p> <p><b>18 Design and Testing of A Liquid Crystal Adaptive Optics Phoropter 477</b><br /><i>Abdul Awwal and Scot Olivier</i></p> <p>18.1 Introduction 477</p> <p>18.2 Wavefront Sensor Selection 478</p> <p>18.2.1 Wavefront Sensor: Shack–Hartmann Sensor 478</p> <p>18.2.2 Shack–Hartmann Noise 483</p> <p>18.3 Beacon Selection: Size and Power, SLD versus Laser Diode 484</p> <p>18.4 Wavefront Corrector Selection 485</p> <p>18.5 Wavefront Reconstruction and Control 486</p> <p>18.5.1 Closed-Loop Algorithm 487</p> <p>18.5.2 Centroid Calculation 488</p> <p>18.6 Software Interface 489</p> <p>18.7 AO Assembly, Integration, and Troubleshooting 491</p> <p>18.8 System Performance, Testing Procedures, and Calibration 492</p> <p>18.8.1 Nonlinear Characterization of the Spatial Light Modulator (SLM) Response 493</p> <p>18.8.2 Phase Wrapping 493</p> <p>18.8.3 Biased Operation of SLM 495</p> <p>18.8.4 Wavefront Sensor Verification 495</p> <p>18.8.5 Registration 496</p> <p>18.8.6 Closed-Loop Operation 499</p> <p>18.9 Results from Human Subjects 502</p> <p>18.10 Discussion 506</p> <p>18.11 Summary 508</p> <p>APPENDIX A: OPTICAL SOCIETY OF AMERICA’S STANDARDS FOR REPORTING OPTICAL ABERRATIONS 511</p> <p>GLOSSARY 529</p> <p>SYMBOL TABLE 553</p> <p>INDEX 565</p>
<b>Jason Porter</b>, PhD, is a post-doctoral research fellow at the University of Rochester's Center for Visual Science in the laboratory of Dr. David R. Williams. <p><b>Julianna E. Lin,</b> M.Eng, is a member of the Research and Technology Staff for the Xerox Innovation Group at the Wilson Center for Research and Technology in Webster, NY.  </p> <p><b>Hope Marcotte Queener,</b> M.Sc, is an Application Developer at the University of Houston College of Optometry.</p> <p><b>Karen Thorn</b></p> <p><b>Abdul Awwal</b>, PhD, is a Research Scientist at the Lawrence Livermore National Laboratory.</p>
<b>Leading experts present the latest technology and applications in adaptive optics for vision science</b> <p>Featuring contributions from the foremost researchers in the field, Adaptive Optics for Vision Science is the first book devoted entirely to providing the fundamentals of adaptive optics along with its practical applications in vision science. The material for this book stems from collaborations fostered by the Center for Adaptive Optics, a consortium of more than thirty universities, government laboratories, and corporations.</p> <p>Although the book is written primarily for researchers in vision science and ophthalmology, the field of adaptive optics has strong roots in astronomy. Researchers in both fields share this technology and, for this reason, the book includes chapters by both astronomers and vision scientists.</p> <p>Following the introduction, chapters are divided into the following sections:</p> <ul> <li>Wavefront Measurement and Correction</li> <li>Retinal Imaging Applications</li> <li>Vision Correction Applications</li> <li>Design Examples</li> </ul> <p>Readers will discover the remarkable proliferation of new applications of wavefront-related technologies developed for the human eye. For example, the book explores how wavefront sensors offer the promise of a new generation of vision correction methods that can deal with higher order aberrations beyond defocus and astigmatism, and how adaptive optics can produce images of the living retina with unprecedented resolution.</p> <p>An appendix includes the Optical Society of America's Standards for Reporting Optical Aberrations. A glossary of terms and a symbol table are also included.</p> <p><i>Adaptive Optics for Vision Science</i> arms engineers, scientists, clinicians, and students with the basic concepts, engineering tools, and techniques needed to master adaptive optics applications in vision science and ophthalmology. Moreover, readers will discover the latest thinking and findings from the leading innovators in the field.</p>

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €