Details

Adaptive Aeroservoelastic Control


Adaptive Aeroservoelastic Control


Aerospace Series 1. Aufl.

von: Ashish Tewari, Peter Belobaba, Jonathan Cooper, Allan Seabridge

102,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 28.12.2015
ISBN/EAN: 9781118927724
Sprache: englisch
Anzahl Seiten: 392

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>This is the first book on adaptive aeroservoelasticity and it presents the nonlinear and recursive techniques for adaptively controlling the uncertain aeroelastic dynamics</b></p> <ul> <li>Covers both linear and nonlinear control methods in a comprehensive manner</li> <li>Mathematical presentation of adaptive control concepts is rigorous</li> <li>Several novel applications of adaptive control presented here are not to be found in other literature on the topic</li> <li>Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations</li> </ul>
<p>About the Author xv</p> <p>Series Editor’s Preface xvii</p> <p>Preface xix</p> <p><b>1 Introduction 1</b></p> <p>1.1 Aeroservoelasticity 1</p> <p>1.2 Unsteady Aerodynamics 4</p> <p>1.3 Linear Feedback Design 7</p> <p>1.4 Parametric Uncertainty and Variation 11</p> <p>1.5 Adaptive Control Design 13</p> <p>1.5.1 Adaptive Control Laws 15</p> <p>1.6 Organization 20</p> <p>References 21</p> <p><b>2 Linear Control Systems 23</b></p> <p>2.1 Notation 23</p> <p>2.2 Basic Control Concepts 23</p> <p>2.3 Input–Output Representation 26</p> <p>2.3.1 Gain and Stability 26</p> <p>2.3.2 Small Gain Theorem 27</p> <p>2.4 Input–Output Linear Systems 28</p> <p>2.4.1 Laplace Transform and Transfer Function 30</p> <p>2.5 Loop Shaping of Linear Control Systems 33</p> <p>2.5.1 Nyquist Theorem 34</p> <p>2.5.2 Gain and Phase Margins 36</p> <p>2.5.3 Loop Shaping for Single Variable Systems 38</p> <p>2.5.4 Singular Values 40</p> <p>2.5.5 Multi-variable Robustness Analysis: Input–Output Model 42</p> <p>2.6 State-Space Representation 42</p> <p>2.6.1 State-Space Theory of Linear Systems 43</p> <p>2.6.2 State Feedback by Eigenstructure Assignment 49</p> <p>2.6.3 Linear Observers and Output Feedback Compensators 50</p> <p>2.7 Stochastic Systems 52</p> <p>2.7.1 Ergodic Processes 57</p> <p>2.7.2 Filtering of Random Noise 59</p> <p>2.7.3 Wiener Filter 60</p> <p>2.7.4 Kalman Filter 61</p> <p>2.8 Optimal Control 65</p> <p>2.8.1 Euler–Lagrange Equations 65</p> <p>2.8.2 Linear, Quadratic Optimal Control 67</p> <p>2.9 Robust Control Design by LQG/LTR Synthesis 71</p> <p>2.10 H2/H∞ Design 77</p> <p>2.10.1 H2 Design Procedure 79</p> <p>2.10.2 H∞ Design Procedure 80</p> <p>2.11 𝜇-Synthesis 81</p> <p>2.11.1 Linear Fractional Transformation 83</p> <p>References 86</p> <p><b>3 Aeroelastic Modelling 87</b></p> <p>3.1 Structural Model 88</p> <p>3.1.1 Statics 88</p> <p>3.1.2 Dynamics 91</p> <p>3.1.3 Typical Wing Section 93</p> <p>3.2 Aerodynamic Modelling Concepts 98</p> <p>3.2.1 Governing Equations for Unsteady Flow 99</p> <p>3.2.2 Full-Potential Equation 100</p> <p>3.2.3 Transonic Small-Disturbance Equation 104</p> <p>3.3 Baseline Aerodynamic Model 106</p> <p>3.3.1 Integral Equation Formulation 108</p> <p>3.3.2 Subsonic Unsteady Aerodynamics 109</p> <p>3.3.3 Supersonic Unsteady Aerodynamics 114</p> <p>3.4 Preliminary Aeroelastic Modelling Concepts 115</p> <p>3.5 Ideal Flow Model for Typical Section 120</p> <p>3.6 Transient Aerodynamics of Typical Section 125</p> <p>3.7 State-Space Model of the Typical Section 126</p> <p>3.8 Generalized Aeroelastic Plant 128</p> <p>References 135</p> <p><b>4 Active Flutter Suppression 139</b></p> <p>4.1 Single Degree-of-Freedom Flutter 141</p> <p>4.2 Bending-Torsion Flutter 146</p> <p>4.3 Active Suppression of Single Degree-of-Freedom Flutter 147</p> <p>4.4 Active Flutter Suppression of Typical Section 153</p> <p>4.4.1 Open-Loop Flutter Analysis 154</p> <p>4.5 Linear Feedback Stabilization 157</p> <p>4.5.1 Pole-Placement Regulator Design 157</p> <p>4.5.2 Observer Design 160</p> <p>4.5.3 Robustness of Compensated System 162</p> <p>4.6 Active Flutter Suppression of Three-Dimensional Wings 164</p> <p>References 168</p> <p><b>5 Self-Tuning Regulation 171</b></p> <p>5.1 Introduction 171</p> <p>5.2 Online Plant Identification 172</p> <p>5.2.1 Least-Squares Parameter Estimation 172</p> <p>5.2.2 Least-Squares Method with Exponential Forgetting 174</p> <p>5.2.3 Projection Algorithm 174</p> <p>5.2.4 Autoregressive Identification 175</p> <p>5.3 Design Methods for Stochastic Self-Tuning Regulators 176</p> <p>5.4 Aeroservoelastic Applications 176</p> <p>References 180</p> <p><b>6 Nonlinear Systems Analysis and Design 181</b></p> <p>6.1 Introduction 181</p> <p>6.2 Preliminaries 182</p> <p>6.2.1 Existence and Uniqueness of Solution 183</p> <p>6.2.2 Expanded Solution 184</p> <p>6.3 Stability in the Sense of Lyapunov 185</p> <p>6.3.1 Local Linearization about Equilibrium Point 187</p> <p>6.3.2 Lyapunov Stability Theorem 189</p> <p>6.3.3 LaSalle Invariance Theorem 192</p> <p>6.4 Input–Output Stability 192</p> <p>6.4.1 Hamilton–Jacobi Inequality 193</p> <p>6.4.2 Input-State Stability 194</p> <p>6.5 Passivity 195</p> <p>6.5.1 Positive Real Transfer Matrix 196</p> <p>6.5.2 Stability of Passive Systems 198</p> <p>6.5.3 Feedback Design for Passive Systems 200</p> <p>References 201</p> <p><b>7 Nonlinear Oscillatory Systems and Describing Functions 203</b></p> <p>7.1 Introduction 203</p> <p>7.2 Absolute Stability 205</p> <p>7.2.1 Popov Stability Criteria 207</p> <p>7.2.2 Circle Criterion 207</p> <p>7.3 Describing Function Approximation 210</p> <p>7.4 Applications to Aeroservoelastic Systems 212</p> <p>7.4.1 Nonlinear and Uncertain Aeroelastic Plant 213</p> <p>References 216</p> <p><b>8 Model Reference Adaptation of Aeroservoelastic Systems 217</b></p> <p>8.1 Lyapunov-Like Stability of Non-autonomous Systems 218</p> <p>8.1.1 Uniform Ultimate Boundedness 219</p> <p>8.1.2 Barbalat’s Lemma 220</p> <p>8.1.3 LaSalle–Yoshizawa Theorem 220</p> <p>8.2 Gradient-Based Adaptation 223</p> <p>8.2.1 Least-Squared Error Adaptation 225</p> <p>8.3 Lyapunov-Based Adaptation 225</p> <p>8.3.1 Nonlinear Gain Evolution 228</p> <p>8.3.2 MRAS for Single-Input Systems 231</p> <p>8.4 Aeroservoelastic Applications 233</p> <p>8.4.1 Reference Aeroelastic Model 234</p> <p>8.4.2 Adaptive Flutter Suppression of Typical Section 236</p> <p>8.4.3 Adaptive Stabilization of Flexible Fighter Aircraft 241</p> <p>References 254</p> <p><b>9 Adaptive Backstepping Control 255</b></p> <p>9.1 Introduction 255</p> <p>9.2 Integrator Backstepping 256</p> <p>9.2.1 A Motivating Example 257</p> <p>9.3 Aeroservoelastic Application 263</p> <p>Reference 264</p> <p><b>10 Adaptive Control of Uncertain Nonlinear Systems 265</b></p> <p>10.1 Introduction 265</p> <p>10.2 Integral Adaptation 266</p> <p>10.2.1 Extension to Observer-Based Feedback 268</p> <p>10.2.2 Modified Integral Adaptation with Observer 269</p> <p>10.3 Model Reference Adaptation of Nonlinear Plant 273</p> <p>10.4 Robust Model Reference Adaptation 275</p> <p>10.4.1 Output-Feedback Design 285</p> <p>10.4.2 Adaptive Flutter Suppression of a Three-Dimensional Wing 288</p> <p>References 294</p> <p><b>11 Adaptive Transonic Aeroservoelasticity 295</b></p> <p>11.1 Steady Transonic Flow Characteristics 296</p> <p>11.2 Unsteady Transonic Flow Characteristics 299</p> <p>11.2.1 Thin Airfoil with Oscillating Flap 300</p> <p>11.2.2 Supercritical Airfoil Oscillating in Pitch 308</p> <p>11.3 Modelling for Transonic Unsteady Aerodynamics 310</p> <p>11.3.1 Indicial Method 311</p> <p>11.3.2 Volterra–Wiener Method 312</p> <p>11.3.3 Describing Function Method 313</p> <p>11.4 Transonic Aeroelastic Plant 316</p> <p>11.5 Adaptive Control of Control-Surface Nonlinearity 317</p> <p>11.5.1 Transonic Flutter Mechanism 319</p> <p>11.6 Adaptive Control of Limit-Cycle Oscillation 322</p> <p>References 330</p> <p><b>Appendix A Analytical Solution for Ideal Unsteady Aerodynamics 331</b></p> <p>A.1 Pure Heaving Oscillation 335</p> <p>A.2 Küssner–Schwarz Solution for General Oscillation 336</p> <p>References 337</p> <p><b>Appendix B Solution to Possio’s Integral Equation for Subsonic, Unsteady</b></p> <p>Aerodynamics 339</p> <p>B.1 Dietze’s Iterative Solution 340</p> <p>B.2 Analytical Solution by Fettis 341</p> <p>B.3 Closed-Form Solution 344</p> <p>References 345</p> <p><b>Appendix C Flutter Analysis of Modified DAST-ARW1 Wing 347</b></p> <p>References 357</p> <p>Index 359</p>
<p><b>Ashish Tewari</b> is a Professor of Aerospace Engineering at the Indian Institute of Technology, Kanpur. He specializes in Flight Mechanics and Control, and is the single author of five previous books, including <i>Aeroservoelasticity – Modeling and Control</i>  (Birkhäuser, Boston, 2015) and <i>Advanced Control of Aircraft, Spacecraft, and Rockets </i>(Wiley, Chichester, 2011). He is also the author of several research papers in aircraft and spacecraft dynamics and control systems. He is an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA), and a Senior Member of the Institution of Electrical and Electronics Engineers (IEEE). Prof. Tewari holds Ph.D.  and M.S. degrees in Aerospace Engineering from the University of Missouri-Rolla, and a B.Tech. degree in Aeronautical Engineering from the Indian Institute of Technology, Kanpur.</p>

Diese Produkte könnten Sie auch interessieren:

Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
PDF ebook
156,99 €
Turbulent Drag Reduction by Surfactant Additives
Turbulent Drag Reduction by Surfactant Additives
von: Feng-Chen Li, Bo Yu, Jin-Jia Wei, Yasuo Kawaguchi
EPUB ebook
156,99 €
Wear
Wear
von: Gwidon W. Stachowiak
PDF ebook
159,99 €