Details

Acid Gas Extraction for Disposal and Related Topics


Acid Gas Extraction for Disposal and Related Topics


Advances in Natural Gas Engineering 1. Aufl.

von: Ying Wu, John J. Carroll, Weiyao Zhu

171,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 22.01.2016
ISBN/EAN: 9781118938638
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This is the fifth volume in a series of books focusing on natural gas engineering, focusing on the extraction and disposal of acid gas. This volume includes information for both upstream and downstream operations, including chapters on modeling, carbon capture, chemical and thermodynamic models, and much more.</p> <p>Written by some of the most well-known and respected chemical and process engineers working with natural gas today, the chapters in this important volume represent the most cutting-edge and state-of-the-art processes and operations being used in the field. Not available anywhere else, this volume is a must-have for any chemical engineer, chemist, or process engineer working with natural gas.</p> <p>There are updates of new technologies in other related areas of natural gas, in addition to the extraction and disposal of acid gas, including testing, reservoir simulations, acid gas injection, and natural gas hydrate formations.  <i>Advances in Natural Gas Engineering</i> is an ongoing series of books meant to form the basis for the working library of any engineer working in natural gas today. Every volume is a must-have for any engineer or library.</p>
<p>Preface xv</p> <p><b>1 Rate-Base Simulations of Absorption Processes; Fata Morgana or Panacea? 1<br /> </b><i>P.J.G. Huttenhuis and G.F. Versteeg</i></p> <p>1.1 Introduction 1</p> <p>1.2 Procede Process Simulator (PPS) 2</p> <p>1.3 Mass Transfer Fundamentals 3</p> <p>1.4 CO2 Capture Case 8</p> <p>1.5 Conclusions and Recommendations 15</p> <p>References 16</p> <p><b>2 Modelling in Acid Gas Removal Processes 17<br /> </b><i>Alan E. Mather</i></p> <p>2.1 Introduction 17</p> <p>2.2 Vapour-Liquid Equilibria 18</p> <p>2.3 Modelling 21</p> <p>2.3.1 Empirical Models 22</p> <p>2.3.2 Activity Coefficient Models 22</p> <p>2.3.3 Two (and more) Solvent Models 23</p> <p>2.3.4 Single Solvent Models 24</p> <p>2.3.5 Equation of State Models 24</p> <p>2.4 Conclusions 25</p> <p>References 26</p> <p><b>3 Thermodynamic Approach of CO</b><b>2 </b><b>Capture, Combination of Experimental Study and Modeling 29<br /> </b><i>Karine Ballerat-Busserolles, Alexander R. Lowe, Yohann Coulier, and J.-Y. Coxam</i></p> <p>3.1 Introduction 30</p> <p>3.2 Thermodynamic Model 31</p> <p>3.3 Carbon Dioxide Absorption in Aqueous Solutions of Alkanolamines 32</p> <p>3.4 Conclusion 35</p> <p>References 36</p> <p><b>4 Employing Simulation Software for Optimized Carbon Capture Process 39<br /> </b><i>Wafa Said-Ibrahim, Irina Rumyantseva, and Manya Garg</i></p> <p>4.1 Introduction 40</p> <p>4.2 Acid Gas Cleaning – Process and Business Goals 40</p> <p>4.3 Modeling Gas Treating in Aspen HYSYSR 42</p> <p>4.3.1 Inbuilt Thermodynamics 43</p> <p>4.3.2 Rate-Based Distillation in Aspen HYSYS 44</p> <p>4.4 Conclusion 45</p> <p>References 46</p> <p><b>5 Expectations from Simulation 47<br /> </b><i>R. Scott Alvis, Nathan A. Hatcher, and Ralph H. Weiland</i></p> <p>5.1 Introduction 48</p> <p>5.2 Realism 48</p> <p>5.2.1 Conclusion 1 49</p> <p>5.2.2 Conclusion 2 50</p> <p>5.2.3 Conclusion 3 50</p> <p>5.2.4 Conclusion 4 51</p> <p>5.3 Reliability of Simulation Data: What’s Data and What’s Not 52</p> <p>5.3.1 Conclusion 5 54</p> <p>5.3.2 Conclusion 6 54</p> <p>5.3.3 Conclusion 7 55</p> <p>5.3.4 Conclusion 8 55</p> <p>5.4 Case Studies 56</p> <p>5.4.1 Hellenic Petroleum Refinery Revamp 56</p> <p>5.4.2 Treating a Refinery Fuel Gas 58</p> <p>5.4.3 Carbon Dioxide Removal in an LNG Unit 60</p> <p>5.4.4 Tail Gas Treating 65</p> <p>5.5 Concluding Remarks 67</p> <p>References 67</p> <p>6 Calorimetry in Aqueous Solutions of Demixing Amines for Processes in CO2 Capture 69<br /> <i>Karine Ballerat-Busserolles, Alexander R. Lowe, Yohann Coulier, and J.-Y. Coxam</i></p> <p>6.1 Introduction 70</p> <p>6.2 Chemicals 72</p> <p>6.3 Liquid-Liquid Phase Equilibrium 73</p> <p>6.4 Mixing Enthalpies of {Water-Amine} and {Water-Amine-CO2} 75</p> <p>6.4.1 Excess Enthalpies 77</p> <p>6.4.2 Enthalpies of Solution 78</p> <p>6.5 Acknowledgements 79</p> <p>References 79</p> <p><b>7 Speciation in Liquid-Liquid Phase-Separating Solutions of Aqueous Amines for Carbon Capture Applications by Raman Spectroscopy 81<br /> </b><i>O. Fandiño, M. Yacyshyn, J.S. Cox, and P.R. Tremaine</i></p> <p>7.1 Introduction 81</p> <p>7.2 Experimental 84</p> <p>7.2.1 Materials 84</p> <p>7.2.2 Sample Preparation 84</p> <p>7.2.3 Raman Spectroscopic Measurements 85</p> <p>7.2.4 Methodology Validation 86</p> <p>7.2.5 Laser Selection Optimization 86</p> <p>7.3 Results and Discussion 87</p> <p>7.3.1 Ammonium Carbamate System 87</p> <p>7.3.2 Methylpiperidine Band Identification 88</p> <p>7.3.3 (N-methylpiperidine + Water + CO2) System 89</p> <p>7.3.4 (2-methylpiperidine + Water + CO2) System 90</p> <p>7.3.5 (4-methylpiperidine + Water + CO2) System 91</p> <p>7.4 Conclusions 91</p> <p>7.5 Acknowledgements 92</p> <p>References 93</p> <p><b>8 A Simple Model for the Calculation of Electrolyte Mixture Viscosities 95<br /> </b><i>Marco A. Satyro and Harvey W. Yarranton</i></p> <p>8.1 Introduction 95</p> <p>8.2 The Expanded Fluid Viscosity Model 98</p> <p>8.3 Results and Discussion 99</p> <p>8.3.1 EF Model for Salts Neglecting Dissociation 100</p> <p>8.3.2 EF Model for Ionic Species 102</p> <p>8.4 Conclusions 104</p> <p>References 104</p> <p><b>9 Phase Equilibria Investigations of Acid Gas Hydrates: Experiments and Modelling 107<br /> </b><i>Zachary T. Ward, Robert A. Marriott, and Carolyn A. Koh</i></p> <p>9.1 Introduction 107</p> <p>9.2 Experimental Methods 108</p> <p>9.3 Results and Discussion 110</p> <p>9.4 Conclusions 112</p> <p>9.5 Acknowledgements 112</p> <p>References 112</p> <p><b>10 Thermophysical Properties, Hydrate and Phase Behaviour Modelling in Acid Gas-Rich Systems 115<br /> </b><i>Antonin Chapoy, Rod Burgass, Bahman Tohidi, Martha Hajiw, and Christophe Coquelet</i></p> <p>10.1 Introduction 116</p> <p>10.2 Experimental Setups and Procedures 117</p> <p>10.2.1 Saturation and Dew Pressure Measurements and Procedures 117</p> <p>10.2.2 Hydrate Dissociation Measurements and Procedures 119</p> <p>10.2.3 Water Content Measurements and Procedures 120</p> <p>10.2.4 Viscosity and Density Measurements and Procedures 120</p> <p>10.2.5 Frost Point Measurements and Procedures 120</p> <p>10.2.6 Materials 121</p> <p>10.3 Thermodynamic and Viscosity Modelling 122</p> <p>10.3.1 Fluid and Hydrate Phase Equilibria Model 122</p> <p>10.4 Results and Discussions 128</p> <p>10.5 Conclusions 136</p> <p>10.6 Acknowledgements 136</p> <p>References 136</p> <p><b>11 “Self-Preservation” of Methane Hydrate in Pure Water and (Water + Diesel Oil + Surfactant) Dispersed Systems 141<br /> </b><i>Xinyang Zeng, Changyu Sun, Guangjin Chen, Fenghe Zhou, and Qidong Ran</i></p> <p>11.1 Introduction 142</p> <p>11.2 Experiments 142</p> <p>11.2.1 Material 142</p> <p>11.2.2 Apparatus 143</p> <p>11.2.3 Experimental Procedure 146</p> <p>11.3 Results and Discussion 146</p> <p>11.3.1 Self-Preservation Effect without Surfactant in Low Water Cut Oil-Water Systems 146</p> <p>11.3.2 Self-Preservation Effect without Surfactant in High Water Cut Oil-Water Systems 148</p> <p>11.3.3 The Effect of Different Surfactants on Self-Preservation Effect in Different Water Cut Oil-Water Systems 149</p> <p>11.4 Conclusions 151</p> <p>11.5 Acknowledgement 151</p> <p>References 151</p> <p><b>12 The Development of Integrated Multiphase Flash Systems 153<br /> </b><i>Carl Landra, Yau-Kun Li, and Marco A. Satyro</i></p> <p>12.1 Introduction 154</p> <p>12.2 Algorithmic Challenges 155</p> <p>12.3 Physical-Chemical Challenges 156</p> <p>12.4 Why Solids? 156</p> <p>12.5 Equation of State Modifications 157</p> <p>12.6 Complex Liquid-Liquid Phase Behaviour 160</p> <p>12.7 Hydrate Calculations 162</p> <p>12.7 Conclusions and Future Work 165</p> <p>References 167</p> <p><b>13 Reliable PVT Calculations – Can Cubics Do It? 169<br /> </b><i>Herbert Loria, Glen Hay, Carl Landra, and Marco A. Satyro</i></p> <p>13.1 Introduction 169</p> <p>13.2 Two Parameter Equations of State 171</p> <p>13.3 Two Parameter Cubic Equations of State Using Volume Translation 172</p> <p>13.4 Three Parameter Cubic Equations of State 175</p> <p>13.5 Four Parameter Cubic Equations of State 177</p> <p>13.6 Conclusions and Recommendations 177</p> <p>References 180</p> <p><b>14 Vapor-Liquid Equilibria Predictions of Carbon Dioxide + Hydrogen Sulfide Mixtures using the CPA, SRK, PR, SAFT, and PC-SAFT Equations of State 183<br /> </b><i>M. Naveed Khan, Pramod Warrier, Cor J. Peters, and Carolyn A. Koh</i></p> <p>14.1 Introduction 184</p> <p>14.2 Results and Discussion 185</p> <p>14.3 Conclusions 188</p> <p>14.4 Acknowledgements 188</p> <p>References 188</p> <p><b>15 Capacity Control Considerations for Acid Gas Injection Systems 191<br /> </b><i>James Maddocks</i></p> <p>15.1 Introduction 191</p> <p>15.2 Requirement for Capacity Control 192</p> <p>15.3 Acid Gas Injection Systems 196</p> <p>15.4 Compressor Design Considerations 197</p> <p>15.5 Capacity Control in Reciprocating AGI Compressors 199</p> <p>15.6 Capacity Control in Reciprocating Compressor/PD Pump Combinations 213</p> <p>15.7 Capacity Control in Reciprocating Compressor/Centrifugal Pump Combinations 215</p> <p>15.8 Capacity Control When Using Screw Compressors 215</p> <p>15.9 Capacity Control When Using Centrifugal Compression 218</p> <p>15.10 System Stability 219</p> <p>15.11 Summary 220</p> <p>Reference 220</p> <p><b>16 Review and Testing of Radial Simulations of Plume Expansion and Confirmation of Acid Gas Containment Associated with Acid Gas Injection in an Underpressured Clastic Carbonate Reservoir 221<br /> </b><i>Alberto A. Gutierrez and James C. Hunter</i></p> <p>16.1 Introduction 222</p> <p>16.2 Site Subsurface Geology 223</p> <p>16.2.1 General Stratigraphy and Structure 224</p> <p>16.2.2 Geology Observed in AGI #1 and AGI #2 227</p> <p>16.3 Well Designs, Drilling and Completions 227</p> <p>16.3.1 AGI #1 228</p> <p>16.3.2 AGI #2 231</p> <p>16.4 Reservoir Testing and Modeling 232</p> <p>16.4.1 AGI #1 233</p> <p>16.4.2 Linam AGI #2 233</p> <p>16.4.3 Comparison of Reservoir between Wells 234</p> <p>16.4.4 Initial Radial Model and Plume Prediction 234</p> <p>16.4.5 Confirmation of Plume Migration Model and</p> <p>Integrity of Caprock 236</p> <p>16.5 Injection History and AGI #1 Responses 236</p> <p>16.6 Discussion and Conclusions 238</p> <p>References 241</p> <p><b>17 Three-Dimensional Reservoir Simulation of Acid Gas Injection in Complex Geology – Process and Practice 243<br /> </b><i>Liaqat Ali and Russell E. Bentley</i></p> <p>17.1 Introduction 244</p> <p>17.2 Step by Step Approach to a Reservoir Simulation Study for Acid Gas Injection 245</p> <p>17.3 Seismic Data and Interpretation 245</p> <p>17.4 Geological Studies 246</p> <p>17.5 Petrophysical Studies 246</p> <p>17.6 Reservoir Engineering Analysis 247</p> <p>17.7 Static Modeling 247</p> <p>17.8 Reservoir Simulation 248</p> <p>17.9 Case History 249</p> <p>17.10 Injection Interval Structure and Modeling 249</p> <p>17.11 Petrophysical Modeling and Development of Static Model 250</p> <p>17.12 Injection Zone Characterization 251</p> <p>17.13 Reservoir Simulation 253</p> <p>17.14 Summary and Conclusions 256</p> <p>References 257</p> <p><b>18 Production Forecasting of Fractured Wells in Shale Gas Reservoirs with Discontinuous Micro-Fractures 259<br /> </b><i>Qi Qian, Weiyao Zhu, and Jia Deng</i></p> <p>18.1 Introduction 260</p> <p>18.2 Multi-Scale Flow in Shale Gas Reservoir 261</p> <p>18.2.1 Multi-scale Nonlinear Seepage Flow Model of Shale Gas Reservoir 261</p> <p>18.2.2 Adsorption – Desorption Model of Shale Gas Reservoir 263</p> <p>18.3 Physical Model and Solution of Fractured Well of Shale Gas Reservoir 264</p> <p>18.3.1 The Dual Porosity Spherical Model with Micro-Fractures Surface Layer 264</p> <p>18.3.2 The Establishment and Solvement of Seepage Mathematical Model 266</p> <p>18.4 Analysis of Influencing Factors of Sensitive Parameters 273</p> <p>18.5 Conclusions 277</p> <p>18.6 Acknowledgements 278</p> <p>References 278</p> <p><b>19 Study on the Multi-Scale Nonlinear Seepage Flow Theory of Shale Gas Reservoir 281<br /> </b><i>Weiyao Zhu, Jia Deng, and Qi Qian</i></p> <p>19.1 Introduction 282</p> <p>19.2 Multi-Scale Flowstate Analyses of the Shale Gas Reservoirs 283</p> <p>19.3 Multi-Scale Nonlinear Seepage Flow Model in Shale Gas Reservoir 285</p> <p>19.3.1 Nonlinear Seepage Flow Model in Nano-Micro Pores 285</p> <p>19.3.2 Multi-Scale Seepage Model Considering of Diffusion, Slippage 288</p> <p>19.3.3 Darcy Flow in Micro Fractures and Fractured Fractures 289</p> <p>19.4 Transient Flow Model of Composite Fracture Network System 291</p> <p>19.5 Production Forecasting 294</p> <p>19.6 Conclusions 298</p> <p>19.7 Acknowledgements 299</p> <p>References 299</p> <p><b>20 CO</b><b>2 </b><b>EOR and Sequestration Technologies in </b><b><i>PetroChina </i></b><b>301<br /> </b><i>Yongle Hu, Xuefei Wang, and Mingqiang Hao</i></p> <p>20.1 Introduction 302</p> <p>20.2 Important Progress in Theory and Technology 302</p> <p>20.2.1 The Miscible Phase Behaviour of Oil-CO2 System 302</p> <p>20.2.2 CO2 Flooding Reservoir Engineering Technology 304</p> <p>20.2.3 Separated Layer CO2 Flooding, Wellbore Anti-Corrosion and High Efficiency Lift Technology 306</p> <p>20.2.4 Long Distance Pipeline Transportation and Injection Technology 306</p> <p>20.2.5 Produced Fluid Treatment for CO2 Flooding and Cycling Gas Injection Technology 306</p> <p>20.2.6 CO2 Flooding Reservoir Monitoring, Performance Analysis Technology 307</p> <p>20.2.7 Potential Evaluation for CO2 Flooding and Storage 308</p> <p>20.3 Progress of Pilot Area 311</p> <p>20.3.1 Block Hei59 312</p> <p>20.3.2 Block Hei79 313</p> <p>20.4 Conclusions 315</p> <p>20.5 Acknowledgements 316</p> <p>References 317</p> <p><b>21 Study on the Microscopic Residual Oil of CO</b><b>2 </b><b>Flooding for Extra-High Water-Cut Reservois 319<br /> </b><i>Zengmin Lun, Rui Wang, Chengyuan Lv, Shuxia Zhao, Dongjiang Lang, and Dong Zhang</i></p> <p>21.1 Introduction 319</p> <p>21.2 Overview of CO2 EOR Mechanisms for Extra High Water Cut Reservoirs 320</p> <p>21.3 Experimental Microscopic Residual Oil Distribution of CO2 Flooding for Extra High Water Cut Reservoirs 321</p> <p>21.3.1 NMR Theory 321</p> <p>21.3.2 <i>In situ </i>NMR Test for Water Flooding and CO2 Flooding 322</p> <p>21.4 Displacement Characteristics of CO2 Flooding and Improve Oil Recovery Method for Post CO2 Flooding 325</p> <p>21.4.1 CO2 Displacement Characteristics for Extra High Water Cut Reservoirs 325</p> <p>21.4.2 Improved Oil Recovery for Post CO2 Flooding 326</p> <p>21.5 Conclusions 327</p> <p>References 328</p> <p><b>22 Monitoring of Carbon Dioxide Geological Utilization and Storage in China: A Review 331<br /> </b><i>Qi Li, Ranran Song, Xuehao Liu, Guizhen Liu, and Yankun Sun</i></p> <p>22.1 Introduction 332</p> <p>22.2 Status of CCUS in China 332</p> <p>22.3 Monitoring of CCUS 336</p> <p>22.3.1 Monitoring Technology at Home and Abroad 336</p> <p>22.3.2 U-tube Sampling System 341</p> <p>22.3.3 Monitoring Technologies in China’s CCUS Projects 341</p> <p>22.4 Monitoring Technology of China’s Typical CCUS Projects 343</p> <p>22.4.1 Shenhua CCS Demonstration Project 343</p> <p>22.4.2 Shengli CO2-EOR Project 345</p> <p>22.5 Environmental Governance and Monitoring Trends in China 345</p> <p>22.6 Conclusion 351</p> <p>22.7 Acknowledgements 352</p> <p>References 352</p> <p><b>23 Separation of Methane from Biogas by Absorption-Adsorption Hybrid Method 359<br /> </b><i>Yong Pan, Zhe Zhang, Xiong-Shi Tong, Hai Li, Xiao-Hui Wang, Bei Liu,Chang-Yu Sun, Lan-Ying Yang, and Guang-Jin Chen</i></p> <p>23.1 Introduction 359</p> <p>23.2 Experiments 361</p> <p>23.2.1 Experimental Apparatus 361</p> <p>23.2.2 Materials 362</p> <p>23.2.3 Synthesis and Activation of ZIF-67 363</p> <p>23.2.4 Gas-Slurry Equilibrium Experiments 363</p> <p>23.2.5 Data Processing 364</p> <p>23.2.6 Breakthrough Experiment 366</p> <p>23.3 Results and Discussions 367</p> <p>23.3.1 Adsorbent Characterization 367</p> <p>23.3.2 Ab-Adsorption Isothermal 368</p> <p>23.3.3 Breakthrough Experiment 370</p> <p>23.4 Conclusions 374</p> <p>23.5 Acknowledgements 374</p> <p>References 374</p> <p>Index 377</p>
<p><b>Ying (Alice) Wu</b> is currently the President of Sphere Technology Connection Ltd. (STC) in Calgary, Canada. From 1983 to 1999 she was an Assistant Professor and Researcher at Southwest Petroleum Institute (now Southwest Petroleum University, SWPU) in Sichuan, China. She received her MSc in Petroleum Engineering from the SWPU and her BSc in Petroleum Engineering from Daqing Petroleum University in Heilongjiang, China.</p> <p><b>John J. Carroll</b>, PhD, PEng is the Director, Geostorage Process Engineering for Gas Liquids Engineering, Ltd. in Calgary, Canada. Dr. Carroll holds bachelor and doctoral degrees in chemical engineering from the University of Alberta, Edmonton, Canada, and is a registered professional engineer in the provinces of Alberta and New Brunswick in Canada.  His fist book, <i>Natural Gas Hydrates: A Guide for Engineers</i>, is now in its second edition, and he is the author or co-author of 50 technical publications and about 40 technical presentations.</p> <p><b>Weiyao Zhu</b> is Professor at University of Science & Technology Beijing in China and Adjunct Professor in State Key Lab of Enhanced Oil and Gas Recovery at the Northeast Petroleum University. He has published more than 100 technical papers and an author of 6 technical books. His research focus is on fluid mechanics in porous media, the theory and application of the multiphase flow for resource exploitation, new energy development, environmental fluid mechanics, and reservoir simulation.</p>

Diese Produkte könnten Sie auch interessieren:

Regenerative Energietrager
Regenerative Energietrager
von: Martin Wietschel, Wolf Fichtner, Otto Rentz
PDF ebook
33,99 €
Fundamentals of Power System Economics
Fundamentals of Power System Economics
von: Daniel S. Kirschen, Goran Strbac
PDF ebook
104,99 €
Fuel Cells, Engines and Hydrogen
Fuel Cells, Engines and Hydrogen
von: Frederick J. Barclay
PDF ebook
110,99 €