Details

AC Electric Motors Control


AC Electric Motors Control

Advanced Design Techniques and Applications
2. Aufl.

von: Fouad Giri

112,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 25.03.2013
ISBN/EAN: 9781118574249
Sprache: englisch
Anzahl Seiten: 592

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors.</p> <p>Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control.</p> <p>Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means.</p> <p><br /> Other key features:</p> <p>• Covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors</p> <p>• Illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more</p> <p>• Includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers</p> <p><br /> This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as  mechatronic, process, and applied control system engineers.</p>
<p>List of Contributors xvii</p> <p>Preface xxi</p> <p><b>1 Introduction to AC Motor Control 1<br /> </b><i>Marc Bodson and Fouad Giri</i></p> <p>1.1 AC Motor Features 1</p> <p>1.2 Control Issues 3</p> <p>1.3 Book Overview 8</p> <p><b>Part One Control Models for AC Motors</b></p> <p><b>2 Control Models for Induction Motors 17<br /> </b><i>Abderrahim El Fadili, Fouad Giri, and Abdelmounime El Magri</i></p> <p>2.1 Introduction 17</p> <p>2.2 Induction Motors—A Concise Description 18</p> <p>2.3 Triphase Induction Motor Modeling 20</p> <p>2.4 Identification of Induction Motor Parameters 32</p> <p>2.5 Conclusions 39</p> <p>References 39</p> <p><b>3</b> <b>Control Models for Synchronous Machines 41<br /> </b><i>Abdelmounime El Magri, Fouad Giri, and Abderrahim El Fadili</i></p> <p>3.1 Introduction 41</p> <p>3.2 Synchronous Machine Structures 42</p> <p>3.3 Preliminaries 43</p> <p>3.4 Dynamic Modeling of Wound-Rotor Synchronous Motors 45</p> <p>3.5 Permanent-Magnet Synchronous Machine Modeling 50</p> <p>3.6 Conclusions 55</p> <p>References 56</p> <p><b>Part Two Observer Design Techniques for AC Motors</b></p> <p><b>4 State Observers for Estimation Problems in Induction Motors 59<br /> </b><i>Gildas Besançon and Alexandru Ţiclea</i></p> <p>4.1 Introduction 59</p> <p>4.2 Motor Representation and Estimation Issues 60</p> <p>4.3 Some Observer Approaches 63</p> <p>4.4 Some Illustration Results 66</p> <p>4.5 Conclusions 75</p> <p>References 76</p> <p><b>5 State Observers for Active Disturbance Rejection in Induction Motor Control 78<br /> </b><i>Hebertt Sira Ramírez, Felipe González Montañez, John Cortés Romero, and Alberto Luviano-Juárez</i></p> <p>5.1 Introduction 78</p> <p>5.2 A Two-Stage ADR Controller Design for the Induction Motor 80</p> <p>5.3 Field-Oriented ADR Armature Voltage Control 90</p> <p>5.a Appendix 99</p> <p>5.a.1 Generalities on Ultra-Models and Observer-Based Active Disturbance Rejection Control 99</p> <p>5.a.2 Assumptions 99</p> <p>5.a.3 Observing the uncertain System through the Ultra-Model 101</p> <p>5.a.4 The Observer-Based Active Disturbance Rejection Controller 102</p> <p>References 103</p> <p><b>6 Observers Design for Systems with Sampled Measurements, Application to AC Motors 105<br /> </b><i>Vincent Van Assche Philippe Dorléans Jean-François Massieu and Tarek Ahmed-Ali</i></p> <p>6.1 Introduction 105</p> <p>6.2 Nomenclature 106</p> <p>6.3 Observer Design 107</p> <p>6.4 Application to the AC Motor 114</p> <p>6.5 Conclusions 121</p> <p>References 121</p> <p><b>7 Experimental Evaluation of Observer Design Technique for Synchronous Motor 123<br /> </b><i>Malek Ghanes and Xuefang Lin Shi</i></p> <p>7.1 Introduction 123</p> <p>7.2 SPMSM Modeling and its Observability 125</p> <p>7.3 Robust MRAS Observer 125</p> <p>7.4 Experimental Results 129</p> <p>7.5 Conclusions 133</p> <p>References 134</p> <p><b>Part Three Control Design Techniques for Induction Motors</b></p> <p><b>8 High-Gain Observers in Robust Feedback Control of Induction Motors 139<br /> </b><i>Hassan K. Khalil and Elias G. Strangas</i></p> <p>8.1 Chapter Overview 139</p> <p>8.2 Field Orientation 140</p> <p>8.3 High-Gain Observers 144</p> <p>8.4 Speed and Acceleration Estimation using High-Gain Observers 146</p> <p>8.5 Flux Control 149</p> <p>8.6 Speed Control with Mechanical Sensor 151</p> <p>8.7 Speed Control without Mechanical Sensor 153</p> <p>8.8 Simulation and Experimental Results 156</p> <p>8.9 Conclusions 157</p> <p>References 157</p> <p><b>9 Adaptive Output Feedback Control of Induction Motors 158<br /> </b><i>Riccardo Marino, Patrizio Tomei, and Cristiano Maria Verrelli</i></p> <p>9.1 Introduction 158</p> <p>9.2 Problem Statement 159</p> <p>9.3 Nonlinear Estimation and Tracking Control for Sensorless Induction Motors 161</p> <p>9.4 Nonlinear Estimation and Tracking Control for the Output Feedback Case 175</p> <p>9.5 Simulation Results 176</p> <p>9.6 Conclusions 186</p> <p>References 186</p> <p><b>10 Nonlinear Control for Speed Regulation of Induction Motor with Optimal Energetic Efficiency 188<br /> </b><i>Abderrahim El Fadili, Abdelmounime El Magri, Hamid Ouadi, and Fouad Giri</i></p> <p>10.1 Introduction 188</p> <p>10.2 Induction Motor Modeling with Saturation Effect Inclusion 190</p> <p>10.3 Controller Design 194</p> <p>10.4 Simulation 202</p> <p>10.5 Conclusions 205</p> <p>References 205</p> <p><b>11 Experimental Evaluation of Nonlinear Control Design Techniques for Sensorless Induction Motor 207<br /> </b><i>Jesús De León, Alain Glumineau, Dramane Traore, and Robert Boisliveau</i></p> <p>11.1 Introduction 207</p> <p>11.2 Problem Formulation 208</p> <p>11.3 Robust Integral Backstepping 209</p> <p>11.4 High-Order Sliding-Mode Control 212</p> <p>11.5 Adaptive Interconnected Observers Design 215</p> <p>11.6 Experimental Results 218</p> <p>11.7 Robust Nonlinear Controllers Comparison 228</p> <p>11.8 Conclusions 231</p> <p>References 231</p> <p><b>12 Multiphase Induction Motor Control 233<br /> </b><i>Roberto Zanasi and Giovanni Azzone</i></p> <p>12.1 Introduction 233</p> <p>12.2 Power-Oriented Graphs 234</p> <p>12.3 Multiphase Induction Motor Complex Dynamic Modeling 236</p> <p>12.4 Multiphase Indirect Field-Oriented Control with Harmonic Injection 243</p> <p>12.5 Conclusions 251</p> <p>References 251</p> <p><b>13 Backstepping Controller for DFIM with Bidirectional AC/DC/AC Converter 253<br /> </b><i>Abderrahim El Fadili, Vincent Van Assche, Abdelmounime El Magri, and Fouad Giri</i></p> <p>13.1 Introduction 253</p> <p>13.2 Modeling “AC/DC/AC Converter—Doubly-Fed Induction Motor” Association 255</p> <p>13.3 Controller Design 260</p> <p>13.4 Simulation Results 269</p> <p>13.5 Conclusions 273</p> <p>References 273</p> <p><b>14 Fault Detection in Induction Motors 275<br /> </b><i>Alessandro Pilloni, Alessandro Pisano, Martin Riera-Guasp, Ruben Puche-Panadero, and Manuel Pineda-Sanchez</i></p> <p>14.1 Introduction 275</p> <p>14.2 Description and Classification of IMs Faults 276</p> <p>14.3 Model-Based FDI in IMs 280</p> <p>14.4 Classical MCSA Based on the Fast Fourier Transform 287</p> <p>14.5 Hilbert Transform 289</p> <p>14.6 Discrete Wavelet Transform Approach 292</p> <p>14.7 Continuous Wavelet Transform Approach 298</p> <p>14.8 Wigner-Ville Distribution Approach 300</p> <p>14.9 Instantaneous Frequency Approach 304</p> <p>References 307</p> <p><b>Part Four Control Design Techniques for Synchronous Motors</b></p> <p><b>15 Sensorless Speed Control of PMSM 313<br /> </b><i>Dhruv Shah, Gerardo Espinosa–Pérez, Romeo Ortega, and Michaël Hilairet</i></p> <p>15.1 Introduction 313</p> <p>15.2 PMSM Models and Problem Formulation 314</p> <p>15.3 Controller Structure and Main Result 316</p> <p>15.4 Unavailability of a Linearization-Based Design 318</p> <p>15.5 Full Information Control 319</p> <p>15.6 Position Observer of Ortega et al. (2011) 322</p> <p>15.7 An I&I Speed and Load Torque Observer 324</p> <p>15.8 Proof of the Main Result 328</p> <p>15.9 Simulation and Experimental Results 332</p> <p>15.10 Future Research 337</p> <p>15.a Appendix 339</p> <p>References 340</p> <p><b>16 Adaptive Output-Feedback Control of Permanent-Magnet Synchronous Motors 341<br /> </b><i>Patrizio Tomei and Cristiano Maria Verrelli</i></p> <p>16.1 Introduction 341</p> <p>16.2 Dynamic Model and Problem Statement 343</p> <p>16.3 Nonlinear Adaptive Control 344</p> <p>16.4 Preliminary Result (Tomei and Verrelli 2008) 347</p> <p>16.5 Main Result (Tomei and Verrelli 2011) 353</p> <p>16.6 Simulation Results (Bifaretti et al. 2012) 357</p> <p>16.7 Experimental Setup and Results (Bifaretti et al. 2012) 364</p> <p>16.8 Conclusions 367</p> <p>References 368</p> <p><b>17 Robust Fault Detection for a Permanent-Magnet Synchronous Motor Using a Nonlinear Observer 370<br /> </b><i>Maria Letizia Corradini, Gianluca Ippoliti, and Giuseppe Orlando</i></p> <p>17.1 Introduction 370</p> <p>17.2 Preliminaries 371</p> <p>17.3 Control Design 372</p> <p>17.4 The Faulty Case 375</p> <p>17.5 Simulation Tests 376</p> <p>References 380</p> <p><b>18 On Digitization of Variable Structure Control for Permanent Magnet Synchronous Motors 381<br /> </b><i>Yong Feng, Xinghuo Yu, and Fengling Han</i></p> <p>18.1 Introduction 381</p> <p>18.2 Control System of PMSM 382</p> <p>18.3 Dynamic Model of PMSM 383</p> <p>18.4 PI Control of PMSM Servo System 384</p> <p>18.5 High-Order Terminal Sliding-Mode Control of PMSM Servo System 385</p> <p>18.6 Sliding-Mode-Based Mechanical Resonance Suppressing Method 388</p> <p>18.7 Digitization of TSM Controllers of PMSM Servo System 393</p> <p>18.8 Conclusions 396</p> <p>References 396</p> <p><b>19 Control of Interior Permanent Magnet Synchronous Machines 398<br /> </b><i>Faz Rahman and Rukmi Dutta</i></p> <p>19.1 Introduction 398</p> <p>19.2 IPM Synchronous Machine Model 401</p> <p>19.3 Optimum Control Trajectories 408</p> <p>19.4 Sensorless Direct Torque Control of IPM Synchronous Machines 412</p> <p>19.5 Sensorless DTC with Closed-Loop Flux Estimation 420</p> <p>19.6 Sensorless Operation at Very Low Speed with High-Frequency Injection 423</p> <p>19.7 Conclusions 426</p> <p>References 427</p> <p><b>20 Nonlinear State-Feedback Control of Three-Phase Wound Rotor Synchronous Motors 429<br /> </b><i>Abdelmounime El Magri, Vincent Van Assche, Abderrahim El Fadili, Fatima-Zahra Chaoui, and Fouad Giri</i></p> <p>20.1 Introduction 429</p> <p>20.2 System Modeling 431</p> <p>20.3 Nonlinear Adaptive Controller Design 435</p> <p>20.4 Simulation 446</p> <p>20.5 Conclusion 450</p> <p>References 450</p> <p><b>Part Five Industrial Applications of AC Motors Control</b></p> <p><b>21 AC Motor Control Applications in Vehicle Traction 455<br /> </b><i>Faz Rahman and Rukmi Dutta</i></p> <p>21.1 Introduction 455</p> <p>21.2 Machines and Associated Control for Traction Applications 464</p> <p>21.3 Power Converters for AC Electric Traction Drives 475</p> <p>21.4 Control Issues for Traction Drives 478</p> <p>21.5 Conclusions 485</p> <p>References 486</p> <p><b>22 Induction Motor Control Application in High-Speed Train Electric Drive 487<br /> </b><i>Jarosław Guziński, Zbigniew Krzeminski, Arkadiusz Lewicki, Haitham Abu-Rub, and Marc Diguet</i></p> <p>22.1 Introduction 487</p> <p>22.2 Description of the High-Speed Train Traction System 488</p> <p>22.3 Estimation Methods 494</p> <p>22.4 Simulation Investigations 497</p> <p>22.5 Experimental Test Bench 497</p> <p>22.6 Experimental Investigations 501</p> <p>22.7 Diagnosis System Principles 503</p> <p>22.8 Summary and Perspectives 505</p> <p>References 506</p> <p><b>23 AC Motor Control Applications in High-Power Industrial Drives 509<br /> </b><i>Ajit K. Chattopadhyay</i></p> <p>23.1 Introduction 509</p> <p>23.2 High-Power Semiconductor Devices 510</p> <p>23.3 High-Power Converters for AC Drives and Control Methods 515</p> <p>23.4 Control of Induction Motor Drives 517</p> <p>23.5 Control of Synchronous Motor Drives 534</p> <p>23.6 Application Examples of Control of High-Power AC Drives 539</p> <p>23.7 New Developments and Future Trends 548</p> <p>23.8 Conclusions 548</p> <p>References 549</p> <p>Index 553</p>
<p><strong>Fouad Giri, Université de Caen Basse-Normandie, France</strong><br />Dr. Giri is currently Distinguished Professor at the University of Caen Basse-Normandie, France. Professor Giri is an Associate Editor of the IFAC Journal Control Engineering Practice and IEEE Transactions on Control Systems Technology. He is Vice-Chair of the IFAC Technical Committee TC1.2 (Adaptive and Learning Systems) and General Chair of 11th IFAC Workshops on Adaptation and Learning in Control and Signal Processing (ALCOSP 2013), Caen, France; and the 4th IFAC Workshop on Periodic System Control (PSYCO 3013.
<p>The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. </p> <p>Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state variable estimation in the absence of mechanical sensors, power factor correction, machine flux optimization, fault detection and isolation, and fault tolerant control. </p> <p>Describing the complete control approach, both controller and observer designs are demonstrated using advanced nonlinear methods, stability and performance are analysed using powerful techniques, including implementation considerations using digital computing means. </p> <p>Other key features: </p> <ul> <li>covers the main types of AC motors including triphase, multiphase, and doubly fed induction motors, wound rotor, permanent magnet, and interior PM synchronous motors</li> <li>illustrates the usefulness of the advanced control methods via industrial applications including electric vehicles, high speed trains, steel mills, and more</li> <li>includes special focus on sensorless nonlinear observers, adaptive and robust nonlinear controllers, output-feedback controllers, fault detection and isolation algorithms, and fault tolerant controllers </li> </ul> <p>This comprehensive volume provides researchers and designers and R&D engineers with a single-source reference on AC motor system drives in the automotive and transportation industry. It will also appeal to advanced students in automatic control, electrical, power systems, mechanical engineering and robotics, as well as  mechatronic, process, and applied control system engineers.</p>

Diese Produkte könnten Sie auch interessieren:

Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
EPUB ebook
114,99 €
Digital Communications with Emphasis on Data Modems
Digital Communications with Emphasis on Data Modems
von: Richard W. Middlestead
PDF ebook
171,99 €
Bandwidth Efficient Coding
Bandwidth Efficient Coding
von: John B. Anderson
PDF ebook
114,99 €