Details

Pathway Design for Industrial Fermentation


Pathway Design for Industrial Fermentation


1. Aufl.

von: Walter Koch

129,99 €

Verlag: Wiley-VCH (D)
Format: PDF
Veröffentl.: 28.12.2023
ISBN/EAN: 9783527843930
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Pathway Design for Industrial Fermentation</b> <p><b>Explore the industrial fermentation processes of chemical intermediates</b> <p>In <i>Pathway Design for Industrial Fermentation</i>, distinguished researcher Dr. Walter Koch delivers an expert overview on industrial fermentation production technology as compared with natural extraction, organic chemistry, and biocatalysis. The book offers key insights for professionals designing and monitoring fermentation processes. <p>The author explores the applications, alternative production, biochemical pathways, metabolic engineering strategy, and downstream processing of various products—including C1 to C6 products—with a focus on low-value products with market prices below 4€ per kilogram. Products will include methane, ethane, acetate, lactic acid, alanine, and others. <p>With specific commentary and insightful perspectives on the cost drivers and technological aspects critical to commercially successful applications, the book also includes: <ul><li> Thorough introductions to methane, ethanol, acetate, lactic acid, alanine, and 3-Hydroxypropionic acid</li> <li> Comprehensive explorations of 1,3-Propanediol, butanol, isobutanol, and isobutene</li> <li> Practical discussions of 1,4-butanediol, succinic acid, itaconic acid, and glutamic acid</li> <li> Fulsome treatments of isoprene, pentamethylenediamine, lysine, citric acid, and adipic acid</li></ul> <p>Perfect for process engineers, biotechnologists, and chemical engineers, <i>Pathway Design for Industrial Fermentation</i> will also benefit biochemists and professionals working in the chemical and food industries.
<p>Preface xvii</p> <p>Introduction xix</p> <p><b>1 Methane 1</b></p> <p>1.1 Application 1</p> <p>1.2 Conventional Production of Methane 1</p> <p>1.3 Carbon Dioxide as Feedstock 2</p> <p>1.4 Conversion of Carbon Dioxide into Methane 4</p> <p>1.5 Biochemical Pathway Design 6</p> <p>1.6 Integration of Hydrogen Production and the Biochemical Methanation 8</p> <p>1.7 Process Development for the "Biochemical Sabatier" without Integrated Water Electrolysis 13</p> <p>1.8 Commercial Application of Fermentative Methane Production 14</p> <p><b>2 Ethanol Ex Glucose 20</b></p> <p>2.1 Application 20</p> <p>2.2 Production of Ethanol 21</p> <p>2.3 Pathway Design 21</p> <p>2.4 Process Development 29</p> <p>2.5 Alternative Raw Material Source 32</p> <p>2.6 Industrial Production and Capacity 38</p> <p><b>3 Acetate and Ethanol Ex CO/H2 49</b></p> <p>3.1 The Wood-Ljungdahl Pathway 49</p> <p>3.2 Formation of Acetate in A. woodii Based on Carbon Dioxide and Hydrogen 55</p> <p>3.3 Formation of Acetate in A. woodii Based on Carbon Monoxide 56</p> <p>3.4 Formation of Ethanol in A. woodii Based on Carbon Dioxide and Hydrogen without AOR 58</p> <p>3.5 Formation of Ethanol in A. woodii Based on Carbon Dioxide and Hydrogen with AOR 60</p> <p>3.6 Formation of Ethanol in C. woodii Based on Carbon Monoxide 62</p> <p>3.7 Formation of Acetate in C. autoethanogenum Based on Carbon Dioxide and Hydrogen 63</p> <p>3.8 Formation of Ethanol in C. autoethanogenum Based on Carbon Dioxide and Hydrogen 63</p> <p>3.9 Industrial Fermentation and Capacity 69</p> <p><b>4 Lactic Acid 74</b></p> <p>4.1 Application 74</p> <p>4.2 Chemical Synthesis of Lactic Acid 75</p> <p>4.3 Pathway Design 76</p> <p>4.4 Process Development 82</p> <p>4.5 Evaluation of Alternative Feedstocks 87</p> <p>4.6 Production Cost and Market Price 91</p> <p>4.7 Industrial Application and Capacity 91</p> <p><b>5 Alanine 97</b></p> <p>5.1 Application 97</p> <p>5.2 Chemical Production of L-alanine 97</p> <p>5.3 Pathway Design 98</p> <p>5.4 Metabolic Engineering 101</p> <p>5.5 Industrial Production and Application 105</p> <p><b>6 3-Hydroxypropionic Acid 109</b></p> <p>6.1 Application 109</p> <p>6.2 Chemical Synthesis 110</p> <p>6.3 Pathway Design 111</p> <p>6.4 Industrial Application 116</p> <p><b>7 1,3-Propanediol 119</b></p> <p>7.1 Application 119</p> <p>7.2 Alternative Production of 1,3-Propanediol 119</p> <p>7.3 Pathway Design Toward 1,3-Propanediol 120</p> <p>7.4 Metabolic Engineering 128</p> <p>7.5 Process Development 132</p> <p>7.6 Industrial Application and Capacity 133</p> <p><b>8 Butanol 137</b></p> <p>8.1 Application 137</p> <p>8.2 Conventional Production of Butanol 138</p> <p>8.3 Pathway Design Based on Glucose 141</p> <p>8.4 Pathway Design Based on Carbon Dioxide, Carbon Monoxide and Hydrogen 146</p> <p>8.5 Process Development for Fermentative Butanol 151</p> <p>8.6 Alternative Raw Material Sources 160</p> <p>8.7 Industrial Application 161</p> <p><b>9 Isobutanol 170</b></p> <p>9.1 Application 170</p> <p>9.2 Conventional Synthesis of Isobutanol 171</p> <p>9.3 Metabolic Engineering 172</p> <p>9.4 Process Development 182</p> <p>9.5 Industrial Application 187</p> <p><b>10 Isobutene 191</b></p> <p>10.1 Application 191</p> <p>10.2 Conventional Synthesis 191</p> <p>10.3 Pathway Design Toward Isobutene 192</p> <p>10.4 Carbon Yield and Carbon Footprint 202</p> <p>10.5 Industrial Fermentation and Capacity 202</p> <p><b>11 1,4-Butanediol 206</b></p> <p>11.1 Application 206</p> <p>11.2 Conventional Synthesis of 1,4-Butanediol 207</p> <p>11.3 Pathway Design 208</p> <p>11.4 Process Design for Fermentative 1,4-Butanediol Based on Glucose 213</p> <p>11.5 1,4-Butanediol Derived by Chemical Hydrogenation of Succinic Acid 215</p> <p>11.6 Alternative Carbon and Energy Source for Fermentation 216</p> <p>11.7 Industrial Application and Capacity 218</p> <p><b>12 Succinic Acid 222</b></p> <p>12.1 Application 222</p> <p>12.2 Conventional Synthesis of Succinic Acid 223</p> <p>12.3 Pathway Design and Metabolic Engineering 224</p> <p>12.4 Production Host 236</p> <p>12.5 Reactor Concepts 239</p> <p>12.6 Downstream Processing 239</p> <p>12.7 Industrial Capacity and Performance 241</p> <p><b>13 Itaconic Acid 248</b></p> <p>13.1 Application 248</p> <p>13.2 Metabolic Engineering 248</p> <p>13.3 Process Design 251</p> <p>13.4 Industrial Application and Capacity 255</p> <p><b>14 Glutamic Acid 258</b></p> <p>14.1 Application 258</p> <p>14.2 Native Biochemical Pathway 259</p> <p>14.3 Metabolic Engineering 263</p> <p>14.4 Process Development and Industrial Application 264</p> <p><b>15 Isoprene 269</b></p> <p>15.1 Application 269</p> <p>15.2 Chemical Synthesis 269</p> <p>15.3 Pathway Design 270</p> <p>15.4 Metabolic Engineering Toward Isoprene 280</p> <p>15.5 Metabolic Engineering Toward Mevalonate 286</p> <p>15.6 Downstream Processing 292</p> <p>15.7 Industrial Application and Capacity 292</p> <p><b>16 Pentamethylenediamine 297</b></p> <p>16.1 Application 297</p> <p>16.2 Chemical Synthesis 298</p> <p>16.3 Pathway Design 298</p> <p>16.4 Metabolic Engineering 305</p> <p>16.5 Downstream Processing 313</p> <p>16.6 Industrial Application 313</p> <p><b>17 Lysine 319</b></p> <p>17.1 Application 319</p> <p>17.2 Chemical Production 320</p> <p>17.3 Metabolic Pathway via DAP and Metabolic Engineering 320</p> <p>17.4 Metabolic Pathway via α-Aminoadipate in Fungi 329</p> <p>17.5 Secretion of Lysine 330</p> <p>17.6 Process Development 330</p> <p>17.7 Industrial Application 333</p> <p><b>18 Citric Acid 339</b></p> <p>18.1 Application 339</p> <p>18.2 Chemical Production and Natural Extraction 339</p> <p>18.3 Biochemical Pathway 340</p> <p>18.4 Process Development 343</p> <p>18.5 Industrial Production 347</p> <p><b>19 Adipic Acid 350</b></p> <p>19.1 Application 350</p> <p>19.2 Chemical Production of Adipic Acid 350</p> <p>19.3 Metabolic Engineering for Fermentation 351</p> <p>19.4 Digression: Metabolic Engineering for C6+ Diacids 361</p> <p>19.5 Process Development 363</p> <p>19.6 Industrial Application and Capacity 364</p> <p><b>20 Hexamethylenediamine 368</b></p> <p>20.1 Application 368</p> <p>20.2 Chemical Production of HMD 369</p> <p>20.3 Metabolic Engineering for Fermentation Technology 370</p> <p>20.4 Biocatalytic Routes Towards HMD 378</p> <p>20.5 Process Design 380</p> <p>20.6 Commercial Application 382</p> <p><b>21 Caprolactam and 6-Aminocaproic Acid 386</b></p> <p>21.1 Application 386</p> <p>21.2 Chemical Production of CPL 386</p> <p>21.3 Metabolic Engineering for Fermentation Technology via Adipyl-CoA 387</p> <p>21.4 Industrial Application 393</p> <p><b>22 Anthranilic Acid and Aniline 397</b></p> <p>22.1 Application 397</p> <p>22.2 Pathway Design 399</p> <p>22.3 Metabolic Engineering for Anthranilate as Fermentation Product 403</p> <p>22.4 Derivatives of Anthranilate as Fermentation Product 407</p> <p>22.5 Alternative Fermentation Precursors for Aniline 409</p> <p>22.6 Process Development with Focus on Product Isolation 411</p> <p>22.7 Industrial Fermentation 414</p> <p><b>23 Farnesene 418</b></p> <p>23.1 Application 418</p> <p>23.2 Chemical Production 420</p> <p>23.3 Biochemical Pathway 420</p> <p>23.4 Metabolic Engineering 428</p> <p>23.5 Process Design with Second Liquid Phase 434</p> <p>23.6 Industrial Application 437</p> <p>References 439</p> <p>Index 445</p>
<p><b>Walter Koch,</b> PhD, is Director of Biochemical Technology at BASF. He is responsible for the technology evaluation and benchmarking of potential fermentation products suitable as drop-ins or precursors for chemical value chains. His work is focused on cost structure referring to the technology potential and carbon footprint of petrochemicals and fermentation products.</p>
<p><b>Explore the industrial fermentation processes of chemical intermediates</b> <p>In <i>Pathway Design for Industrial Fermentation</i>, distinguished researcher Dr. Walter Koch delivers an expert overview on industrial fermentation production technology as compared with natural extraction, organic chemistry, and biocatalysis. The book offers key insights for professionals designing and monitoring fermentation processes. <p>The author explores the applications, alternative production, biochemical pathways, metabolic engineering strategy, and downstream processing of various products—including C1 to C6 products—with a focus on low-value products with market prices below 4€ per kilogram. Products will include methane, ethane, acetate, lactic acid, alanine, and others. <p>With specific commentary and insightful perspectives on the cost drivers and technological aspects critical to commercially successful applications, the book also includes: <ul><li> Thorough introductions to methane, ethanol, acetate, lactic acid, alanine, and 3-Hydroxypropionic acid</li> <li> Comprehensive explorations of 1,3-Propanediol, butanol, isobutanol, and isobutene</li> <li> Practical discussions of 1,4-butanediol, succinic acid, itaconic acid, and glutamic acid</li> <li> Fulsome treatments of isoprene, pentamethylenediamine, lysine, citric acid, and adipic acid</li></ul> <p>Perfect for process engineers, biotechnologists, and chemical engineers, <i>Pathway Design for Industrial Fermentation</i> will also benefit biochemists and professionals working in the chemical and food industries.

Diese Produkte könnten Sie auch interessieren:

The Fundamentals of Process Intensification
The Fundamentals of Process Intensification
von: Andrzej Stankiewicz, Tom Van Gerven, Georgios Stefanidis
EPUB ebook
70,99 €
The Fundamentals of Process Intensification
The Fundamentals of Process Intensification
von: Andrzej Stankiewicz, Tom Van Gerven, Georgios Stefanidis
PDF ebook
70,99 €
Solution-Processable Components for Organic Electronic Devices
Solution-Processable Components for Organic Electronic Devices
von: Beata Luszczynska, Krzysztof Matyjaszewski, Jacek Ulanski
PDF ebook
210,99 €