Details

Two-Dimensional Transition-Metal Dichalcogenides


Two-Dimensional Transition-Metal Dichalcogenides

Phase Engineering and Applications in Electronics and Optoelectronics
1. Aufl.

von: Chi Sin Tang, Xinmao Yin, Andrew T. S. Wee

133,99 €

Verlag: Wiley-VCH (D)
Format: EPUB
Veröffentl.: 08.11.2023
ISBN/EAN: 9783527838769
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<B>Two-Dimensional Transition-Metal Dichalcogenides</B> <p><b>Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications</b> <p><i>Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics</i> provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. <p><i>Two-Dimensional Transition-Metal Dichalcogenides</i> includes further information on: <ul> <li>Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess</li> <li>Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors</li> <li>Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems</li> <li>Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field</li> </ul> <p><i>Two-Dimensional Transition-Metal Dichalcogenides</i> provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.
<p>Preface xi</p> <p><b>1 Two-dimensional Transition Metal Dichalcogenides: A General Overview 1<br /> </b><i>Chi Sin Tang and Xinmao Yin</i></p> <p>1.1 Introduction to 2D-TMDs 1</p> <p>1.2 Crystal Structures of 2D-TMDs in Different Phases 2</p> <p>1.2.1 Other Structural Phases 3</p> <p>1.2.2 Phase Stability 4</p> <p>1.3 Electronic Band Structures of 2D-TMDs 7</p> <p>1.3.1 Electronic Band Structures of the 1H, 1T, and 1T ′ Phase 8</p> <p>1.3.2 Indirect-to-Direct Bandgap Transition 11</p> <p>1.3.3 Spin-Orbit Coupling and Its Effects and Optical Selection Rules 13</p> <p>1.4 Excitons (Coulomb-Bound Electron-Hole Pairs) 15</p> <p>1.4.1 Exciton Binding Energy 16</p> <p>1.4.2 Excitons and Other Complex Quasiparticles 18</p> <p>1.4.3 Resonant Excitons in 2D-TMDs 19</p> <p>1.5 Experimental Studies and Characterization of 2D-TMDs 20</p> <p>1.5.1 Synthesis of 2D-TMDs 21</p> <p>1.5.1.1 Chemical Vapour Deposition 21</p> <p>1.5.1.2 Molecular Beam Epitaxy 22</p> <p>1.5.2 Optical Characterization 23</p> <p>1.5.2.1 Photoluminescence 23</p> <p>1.5.2.2 Spectroscopic Ellipsometry 25</p> <p>1.5.2.3 Raman Characterization 29</p> <p>1.5.3 Electronic Bandgap 35</p> <p>1.5.3.1 Angle-Resolved Photoemission Spectroscopy 35</p> <p>1.5.3.2 Scanning Tunneling Spectroscopy (STS) 37</p> <p>1.5.4 Conclusions 40</p> <p>References 40</p> <p><b>2 Synthesis and Phase Engineering of Low-Dimensional TMDs and Related Material Structures 61<br /> </b><i>Bijun Tang, Jiefu Yang, and Zheng Liu</i></p> <p>2.1 Introduction 61</p> <p>2.2 Structure of 2D TMDs 62</p> <p>2.3 Synthesis of 2D TMDs 64</p> <p>2.3.1 Top-Down Method 65</p> <p>2.3.2 Bottom-Up Method 66</p> <p>2.4 Phase Engineering of 2D TMDs 66</p> <p>2.4.1 Direct Synthesis of TMDs with Targeted Phases 68</p> <p>2.4.1.1 Precursor Selection 68</p> <p>2.4.1.2 Catalyst 70</p> <p>2.4.1.3 Temperature Control 72</p> <p>2.4.1.4 Alloying 74</p> <p>2.4.2 External Factor-Induced Phase Transformation 79</p> <p>2.4.2.1 Ion Intercalation 79</p> <p>2.4.2.2 Thermal Treatment 81</p> <p>2.5 Conclusion 82</p> <p>References 83</p> <p><b>3 Thermoelectric Properties of Polymorphic 2D-TMDs 87<br /> </b><i>H. K. Ng, Yunshan Zhao, Dongzhi Chi, and Jing Wu</i></p> <p>3.1 Introduction to 2D Thermoelectrics 87</p> <p>3.1.1 Why 2D over 3D? 88</p> <p>3.1.2 Why 2D Semiconductors? 89</p> <p>3.2 Thermoelectric Transport 89</p> <p>3.2.1 Boltzmann Transport Equation 90</p> <p>3.2.2 Scattering Parameter for Different Mechanism 92</p> <p>3.2.2.1 Ionized/Charged Impurity Scattering 92</p> <p>3.2.2.2 Phonons Scattering 93</p> <p>3.2.2.3 Carrier–Carrier Scattering 94</p> <p>3.2.2.4 Surface Roughness Scattering 95</p> <p>3.3 Experimental Characterization TE in 2D 95</p> <p>3.3.1 Electrical Measurements 95</p> <p>3.3.1.1 FET Measurements 95</p> <p>3.3.1.2 Hall Measurements 96</p> <p>3.3.2 Seebeck Measurement 96</p> <p>3.3.2.1 ΔT Calibration 97</p> <p>3.3.2.2 V Tep Measurement 97</p> <p>3.3.3 Thermal Conductivity 98</p> <p>3.3.3.1 Raman Spectrometer 99</p> <p>3.3.3.2 Tdtr (fdtr) 101</p> <p>3.3.3.3 Thermal Bridge Method (Electron Beam Heating Technique) 102</p> <p>3.3.3.4 Other Thermal Property Measurement Methods 104</p> <p>3.4 Manipulation of TE Properties in 2D 106</p> <p>3.4.1 Tuning of Carrier Concentration 107</p> <p>3.4.2 Strain Engineering 107</p> <p>3.4.3 Band Engineering 110</p> <p>3.4.3.1 Layer Thickness and Band Convergence 110</p> <p>3.4.4 Phase Transition 112</p> <p>3.5 Future Outlook and Perspective 115</p> <p>References 117</p> <p><b>4 Emerging Electronic Properties of Polymorphic 2D-TMDs 127<br /> </b><i>Tong Yang, Zishen Wang, Jiaren Yuan, Jun Zhou, and Ming Yang</i></p> <p>4.1 Electronic Structure and Optical Properties of 2D-TMDs 127</p> <p>4.1.1 Electronic and Optical Properties of 1H-Phase 2D-TMDs 127</p> <p>4.1.2 Electronic and Optical Properties of 1T-Phase 2D-TMDs 131</p> <p>4.2 Polaron States of 2D-TMDs 133</p> <p>4.2.1 Holstein Polarons in MoS 2 133</p> <p>4.2.1.1 Experimental Characterizations of Holstein Polarons 133</p> <p>4.2.1.2 Theoretical Simulations of the Spectral Functions 136</p> <p>4.2.2 Asymmetric Intervalley Polaron Effects on Band Edges of 2D-TMDs 137</p> <p>4.2.3 Polaron Effects on the Band Gap Size of 2D-TMDs 139</p> <p>4.3 Valley Properties of 2D-TMDs 143</p> <p>4.3.1 Circularly Polarized Light 147</p> <p>4.3.2 External Field 148</p> <p>4.3.3 Magnetic Metal Doping 148</p> <p>4.3.4 Magnetic Substrate 149</p> <p>4.4 Charge Density Waves of 2D-TMDs 151</p> <p>4.4.1 Charge Density Waves in TMDs 151</p> <p>4.4.2 Effects of CDW on Electronic Properties 154</p> <p>4.4.3 Mechanisms in CDW Transitions 155</p> <p>4.4.4 Manipulation of CDWs 158</p> <p>4.5 Janus Structures of 2D-TMDs 159</p> <p>4.5.1 Fabrication Approaches for Janus 2D TMDs 159</p> <p>4.5.2 Emerging Properties of Janus 2D TMDs 160</p> <p>4.5.3 Potential Applications of Janus 2D TMDs 160</p> <p>4.6 Moiré Superlattices of 2D-TMDs 161</p> <p>References 165</p> <p><b>5 Magnetism and Spin Structures of Polymorphic 2D TMDs 181<br /> </b><i>Meizhuang Liu, Zuxin Chen, Jingbo Li, Yuli Huang, Kuan Eng Johnson Goh, and Andrew T. S. Wee</i></p> <p>5.1 Two-dimensional Ferromagnetism 182</p> <p>5.2 Cr-based Magnetic Materials and Device Applications 183</p> <p>5.3 Polymorphic 2D Cr-based Magnetic TMDs 191</p> <p>5.4 Magnetism in 2D Vanadium, Ion, Manganese Chalcogenides 200</p> <p>5.5 Conclusions and Outlook 204</p> <p>Acknowledgements 204</p> <p>References 205</p> <p><b>6 Recent Progress of Mechanical Exfoliation and the Application in the Study of 2D Materials 211<br /> </b><i>Yunyun Dai, Xinyu Huang, Xu Han, Jiangang Guo, Xiangfan Xu, Lei Wang, Luqi Liu, Ningning Song, Yeliang Wang, and Yuan Huang</i></p> <p>6.1 Introduction 211</p> <p>6.2 Different Ways for Preparing 2D Materials 213</p> <p>6.2.1 Chemical Vapor Deposition (CVD) 213</p> <p>6.2.2 Mechanical Exfoliation (ME) 213</p> <p>6.3 New Mechanical Exfoliation Methods 214</p> <p>6.3.1 Oxygen Plasma Enhanced Exfoliation 214</p> <p>6.3.2 Gold Film Enhanced Exfoliation 218</p> <p>6.4 Application of Mechanical Exfoliation Method 222</p> <p>6.4.1 Electrical Properties and Devices 222</p> <p>6.4.1.1 Screening of Disorders 223</p> <p>6.4.1.2 Electrical Contacts of 2D Materials 225</p> <p>6.4.2 Optical Properties and Photonic Devices 227</p> <p>6.4.2.1 Photodetectors 227</p> <p>6.4.2.2 Optical Modulators 228</p> <p>6.4.2.3 Single Photon Emitters 228</p> <p>6.4.3 Moiré Superlattice and Devices 230</p> <p>6.4.3.1 Graphene/h-BN Moiré Superlattice 230</p> <p>6.4.3.2 Twisted Graphene Moiré Superlattice 231</p> <p>6.4.3.3 Twisted TMD Moiré Superlattice 231</p> <p>6.4.4 Magnetic Properties and Memory Devices 232</p> <p>6.4.4.1 Ferromagnetism in 2D Materials 235</p> <p>6.4.4.2 Antiferromagnetism in 2D Materials 237</p> <p>6.4.5 Thermal Conduction 240</p> <p>6.4.6 Superconductors 244</p> <p>6.4.6.1 2D Superconductors and Their Characteristics 244</p> <p>6.4.6.2 Regulation Methods 247</p> <p>6.5 Summary and Outlook 249</p> <p>Acknowledgments 249</p> <p>References 250</p> <p><b>7 Applications of Polymorphic Two-Dimensional Transition Metal Dichalcogenides in Electronics and Optoelectronics 267<br /> </b><i>Yao Yao, Siyuan Li, Jiajia Zha, Zhuangchai Lai, Qiyuan He, Chaoliang Tan, and Hua Zhang</i></p> <p>7.1 Field-Effect Transistors (FETs) 268</p> <p>7.1.1 Homojunction-based FETs Formed by Phase Transition 269</p> <p>7.1.2 Homojunction-based FETs Formed by Direct Synthesis 270</p> <p>7.2 Memory and Neuromorphic Computing 272</p> <p>7.3 Energy Harvesting 275</p> <p>7.4 Photodetectors 277</p> <p>7.5 Solar Cells 282</p> <p>7.6 Perspectives 284</p> <p>References 285</p> <p><b>8 Polymorphic Two-dimensional Transition Metal Dichalcogenides: Modern Challenges and Opportunities 293<br /> </b><i>Chi Sin Tang, Xinmao Yin, and Andrew T. S. Wee</i></p> <p>8.1 Summing up the Chapters 293</p> <p>8.2 Projecting the Future: Challenges and Opportunities 295</p> <p>8.3 Global Challenges and Threats 296</p> <p>8.3.1 Clean and Renewable Energy Sources 297</p> <p>8.3.2 Water Treatment and Access to Clean Water 299</p> <p>8.3.3 Healthcare and Pandemic Intervention 302</p> <p>8.3.4 Food Safety and Security 305</p> <p>8.3.4.1 Agricultural Production, Sustainability, Productivity, and Protection 306</p> <p>8.3.4.2 Roles of 2D-TMDs in Food Packaging and Preservation 306</p> <p>8.4 Exponential Growth in Demands for Modern Computation 307</p> <p>8.4.1 Deep Learning and Artificial Intelligence 307</p> <p>8.4.2 Internet of Things and Data Overload 308</p> <p>8.5 Conclusion 312</p> <p>References 312</p> <p>Index 325</p>
<p><b>Chi Sin Tang, PhD,</b> is currently Research Fellow at the Singapore Synchrotron Light Source, National University of Singapore (NUS) under the NUS Emerging Scientist Fellowship.</p> <p><b>Xinmao Yin</b> is Professor at the Physics Department of Shanghai University, China.</p> <p><b>Andrew T. S. Wee</b> is a class of '62 Professor of Physics at the National University of Singapore.</p>
<p><b>Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications</b> <p><i>Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics</i> provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. <p><i>Two-Dimensional Transition-Metal Dichalcogenides</i> includes further information on: <ul> <li>Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess</li> <li>Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors</li> <li>Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems</li> <li>Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field</li> </ul> <p><i>Two-Dimensional Transition-Metal Dichalcogenides</i> provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Diese Produkte könnten Sie auch interessieren:

Industrial Enzyme Applications
Industrial Enzyme Applications
von: Andreas Vogel, Oliver May
PDF ebook
142,99 €
Oxide Thermoelectric Materials
Oxide Thermoelectric Materials
von: Yuan-Hua Lin, Jinle Lan, Cewen Nan
PDF ebook
124,99 €
Wet Cake Filtration
Wet Cake Filtration
von: Harald Anlauf
EPUB ebook
120,99 €