Details

Organic Solar Cells


Organic Solar Cells

Materials Design, Technology and Commercialization
1. Aufl.

von: Liming Ding

183,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 09.02.2022
ISBN/EAN: 9783527833665
Sprache: englisch
Anzahl Seiten: 720

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Organic Solar Cells</b> <p><b>A timely and singular resource on the latest advances in organic photovoltaics</b> <p>Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. <p>In <i>Organic Solar Cells: Materials Design, Technology and Commercialization</i>, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. <p>The author also provides: <ul><li>Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors</li> <li>Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability</li> <li>Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications</li> <li>In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells</li></ul> <p> Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, <i>Organic Solar Cells: Materials Design, Technology and Commercialization</i> will also earn a place in the libraries of surface chemists and physicists and electrical engineers.
<p>Preface xv</p> <p><b>1 Conjugated Polymer Donors for Organic Solar Cells 1</b></p> <p><i>Xiaopeng Xu, Xiyue Yuan, Qunping Fan, Chunhui Duan, Maojie Zhang, and Qiang Peng</i></p> <p>1.1 Introduction 1</p> <p>1.2 LBG Polymers 3</p> <p>1.2.1 LBG Polymers Based on Benzothiadiazole (BT) 3</p> <p>1.2.2 LBG Polymers Based on Isoindigo (IID) 8</p> <p>1.2.3 LBG Polymers Based on Diketopyrrolopyrrole (DPP) 14</p> <p>1.3 MBG Polymers 19</p> <p>1.3.1 MBG Polymers Based on Benzothiadiazole (BT) 22</p> <p>1.3.2 MBG Polymers Based on Quinoxaline (Qx) 31</p> <p>1.3.3 MBG Polymers Based on Thienopyrrolodione (TPD) 35</p> <p>1.3.4 MBG Polymers Based on Thieno[3,4-b]thiophene (TT) 40</p> <p>1.4 WBG Polymers 46</p> <p>1.4.1 WBG Polymers Based on Polythiophene (PT) Derivatives 46</p> <p>1.4.2 WBG Polymers Based on Benzodithiophene-alt-Thiophene Derivatives 49</p> <p>1.4.3 WBG Polymers Based on Benzothiadiazole (BT) Derivatives 50</p> <p>1.4.4 WBG Polymers Based on Benzotriazole (BTA) Derivatives 53</p> <p>1.4.5 WBG Polymers Based on Thiazole, Pyrazine, and Their Derivatives Containing N-Heterocycles 56</p> <p>1.4.6 WBG Polymers Based on Benzodithiophene-4,8-dione (BDD) Derivatives 62</p> <p>1.4.7 Other WBG Polymers 65</p> <p>1.5 Summary and Outlook 69</p> <p>References 69</p> <p><b>2 p-Type Molecular Photovoltaic Materials 77</b></p> <p><i>Qihui Yue and Xiaozhang Zhu</i></p> <p>2.1 Introduction 77</p> <p>2.2 p-Type Molecular Photovoltaic Materials Used in Vacuum-Deposited Solar Cells 78</p> <p>2.2.1 Oligothiophene-Based Molecular Donors 79</p> <p>2.2.2 D-A-A′ -Type Molecular Donors 80</p> <p>2.2.3 Borondipyrromethenes-Based Molecular Donors 83</p> <p>2.2.4 Other Molecular Donors 85</p> <p>2.3 p-Type Molecular Photovoltaic Materials Used in Solution-Processed Solar Cells 88</p> <p>2.3.1 A–D–A-Type Molecular Donors 89</p> <p>2.3.1.1 Oligothiophene-Based A–D–A-Type Molecular Donors 89</p> <p>2.3.1.2 Benzodithiophene-Based A–D–A-Type Molecular Donors 90</p> <p>2.3.1.3 Dithienosilole-Based A–D–A-Type Molecular Donors 95</p> <p>2.3.1.4 Dithienopyrrole-Based A–D–A-Type Molecular Donors 96</p> <p>2.3.2 D1-A-D2-A-D1-Type Molecular Donors 96</p> <p>2.3.2.1 Dithienosilole-Based D1-A-D2-A-D1-Type Molecular Donors 99</p> <p>2.3.2.2 Benzodithiophene-Based D1-A-D2-A-D1-Type Molecular Donors 101</p> <p>2.3.2.3 Indacenodithiophene-Based D1-A-D2-A-D1-Type Molecular Donors 103</p> <p>2.3.3 Porphyrin-Based Molecular Donors 105</p> <p>2.3.4 Other Molecular Donors 107</p> <p>2.4 Current Progress on Small-Molecule Solar Cells with Nonfullerene Acceptors 110</p> <p>2.4.1 Binary Solar Cells 111</p> <p>2.4.2 Ternary Solar Cells 112</p> <p>2.5 Summary and Outlook 114</p> <p>References 115</p> <p><b>3 Fullerene Acceptors 121</b></p> <p><i>Zuo Xiao</i></p> <p>3.1 Introduction 121</p> <p>3.2 Fullerene Acceptors for Organic Solar Cells 123</p> <p>3.2.1 Pristine Fullerenes 123</p> <p>3.2.2 Fullerene Monoadducts 126</p> <p>3.2.2.1 [2+1] Addition Derivatives 126</p> <p>3.2.2.2 [2+2] Addition Derivatives 129</p> <p>3.2.2.3 [2+3] Addition Derivatives 129</p> <p>3.2.2.4 [2+4] Addition Derivatives 130</p> <p>3.2.2.5 1,4-Addition Derivatives 130</p> <p>3.2.3 Fullerene Bisadducts 130</p> <p>3.2.4 Fullerene Multiadducts 135</p> <p>3.2.5 Unconventional Fullerenes 136</p> <p>3.3 Summary 138</p> <p>References 139</p> <p><b>4 Non-fullerene Small-Molecule Acceptors for Organic Solar Cells 145</b></p> <p><i>Wei Gao, Jun Yuan, Zhenghui Luo, Jinru Cao, Weihua Tang, Yingping Zou, and Chuluo Yang</i></p> <p>4.1 Molecular Design Principles 145</p> <p>4.2 PDI-Based SMAs 146</p> <p>4.2.1 PDI Monomers 146</p> <p>4.2.2 PDI Dimers 147</p> <p>4.2.3 PDI Trimers 150</p> <p>4.2.4 PDI Tetramers 153</p> <p>4.3 A–D–A-Type SMAs 160</p> <p>4.3.1 Side Chains Optimization 160</p> <p>4.3.2 End Groups Engineering 164</p> <p>4.3.3 Core Units Engineering 167</p> <p>4.3.3.1 IDTT and Its Derivations 167</p> <p>4.3.3.2 Spacer Unit Effects 176</p> <p>4.3.3.3 Asymmetric Cores 184</p> <p>4.3.3.4 Non-fused Cores 194</p> <p>4.4 A–DA′ D–A–Type SMAs 200</p> <p>4.4.1 BTA-Based A–DA′ D–A SMAs 201</p> <p>4.4.2 BT-Based A–DA′ D–A SMAs 204</p> <p>4.4.3 BSe- and Qx-Based OSCs 209</p> <p>References 210</p> <p><b>5 Electron-Donating Ladder-Type Heteroacenes for Photovoltaic Applications: From Polymer Donor Materials to Small-Molecule Acceptor Materials 215</b></p> <p><i>Qisheng Tu, Yunlong Ma, and Qingdong Zheng</i></p> <p>5.1 Introduction 215</p> <p>5.2 D–A Copolymers Based on Ladder-Type Heteroacenes 217</p> <p>5.2.1 Pentacyclic and Hexacyclic Heteroacenes-Based D–A Copolymers 217</p> <p>5.2.2 Heptacene-Based D–A Copolymers 219</p> <p>5.2.3 D–A Copolymers Based on Heteroacenes with Nine or More Fused Rings 222</p> <p>5.3 A–D–A NFAs Based on Ladder-Type Heteroacenes 223</p> <p>5.3.1 A–D–A NFAs Based on Heteropentacenes and Heterohexacenes 224</p> <p>5.3.2 A–D–A NFAs Based on Heteroheptacenes 226</p> <p>5.3.2.1 NFAs Based on Heteroheptacenes with sp3-Hybridized Bridging Atoms 226</p> <p>5.3.2.2 NFAs Based on Heteroheptacenes Without sp3-Hybridized Bridging Atoms 231</p> <p>5.3.3 A–D–A NFAs Based on Heteroacenes with Eight or More Fused Rings 233</p> <p>5.3.4 Other NFAs 235</p> <p>5.4 Conclusions and Outlook 236</p> <p>References 237</p> <p><b>6 Chlorinated Organic Solar Cells 241</b></p> <p><i>Hui Chen, Mingrui Pu, and Feng He</i></p> <p>6.1 Introduction 241</p> <p>6.2 Chlorination Versus Fluorination: A Comprehensive Study 242</p> <p>6.2.1 Synthesis 242</p> <p>6.2.2 The Manipulation of Energy Level and Absorption 244</p> <p>6.2.3 The Steric Hindrance and Morphology 245</p> <p>6.2.4 The Synergistic Effect of Chlorination and Fluorination 246</p> <p>6.3 Recent Advances in Chlorinated Semiconductors 249</p> <p>6.3.1 Chlorination on the Donor Units of Polymer Donors 249</p> <p>6.3.1.1 Chlorination of the Donor Units in Backbone of Polymer Donors 249</p> <p>6.3.1.2 Chlorination of the Donor Units in Side Chain of Polymer Donors 250</p> <p>6.3.2 Chlorination on the Acceptor Units of Polymer Donors 255</p> <p>6.3.3 Chlorination of the π-Bridge of the Polymer Donors 258</p> <p>6.3.4 Chlorinated Small Molecular Donors 260</p> <p>6.3.5 Chlorinated Small Molecular Acceptors 260</p> <p>6.3.5.1 Photovoltaic Performance of Chlorinated Small Molecular Acceptors 262</p> <p>6.3.5.2 The Investigation of the Crystal Structure of Chlorinated Small Molecular Acceptors 266</p> <p>6.3.5.3 The Semitransparent Organic Solar Cells Based on Chlorinated Small Molecular Acceptors 268</p> <p>6.4 Conclusion and Outlook 269</p> <p>References 270</p> <p><b>7 Polymer–Polymer Solar Cells: Materials, Device, and Stability 275</b></p> <p><i>Jianyu Yuan, Huiliang Sun, Yingjian Yu, Wanli Ma, Xugang Guo, and Jun Liu</i></p> <p>7.1 Introduction 275</p> <p>7.2 The Device Structure and Basic Principles of All-PSCs 277</p> <p>7.3 Materials Design Toward Efficient All-PSCs 278</p> <p>7.3.1 Progress of N2200 and Its Derivative-Based All-PSCs 278</p> <p>7.3.1.1 Molecular Design Strategy for N2200 Derivatives 279</p> <p>7.3.1.2 Molecular Design Strategy for PDI Polymers 283</p> <p>7.3.1.3 Molecular Design Strategy for BTI Polymers 283</p> <p>7.3.1.4 BTI Polymers for High-Performance All-PSCs with Small Eloss 287</p> <p>7.3.2 Progress of Polymer Acceptors Containing B←N Unit 289</p> <p>7.3.2.1 Principle of B←N Unit 289</p> <p>7.3.2.2 Electron-Deficient Building Blocks Based on B←N Unit 289</p> <p>7.3.2.3 Optimizing ELUMO 292</p> <p>7.3.2.4 Tuning Absorption Spectra 294</p> <p>7.3.2.5 Enhancing Electron Mobility 295</p> <p>7.3.2.6 Optimizing Active Layer Morphology 297</p> <p>7.3.3 Progress of Polymer Acceptors Bearing Cyano Groups 299</p> <p>7.4 Device Performance and Stability of All-PSCs 303</p> <p>7.4.1 Morphology Optimization and Device Engineering 303</p> <p>7.4.2 The Enhanced Stability of All-PSCs 307</p> <p>7.4.2.1 Thermal Stability 307</p> <p>7.4.2.2 Ambient Stability 308</p> <p>7.4.2.3 Mechanical Stability 308</p> <p>7.4.2.4 Photostability 309</p> <p>7.5 Conclusion and Outlook 310</p> <p>References 310</p> <p><b>8 Organic Solar Cells with High Open-Circuit Voltage >1 V 313</b></p> <p><i>Ailing Tang, Yuze Lin, and Erjun Zhou</i></p> <p>8.1 Introduction 313</p> <p>8.2 n-Type Small-Molecule Acceptors 315</p> <p>8.2.1 Fullerene-Based SMAs 315</p> <p>8.2.2 Non-fullerene SMAs 317</p> <p>8.2.2.1 PDI-Based SMAs 317</p> <p>8.2.2.2 IC and Its Derivatives-Based A–D–A-Type SMAs 319</p> <p>8.2.2.3 A2-A1-D-A1-A2-Type SMAs with BT as A1 Units 322</p> <p>8.2.2.4 A2-A1-D-A1-A2-Type SMAs with BTA or Qx as A1 Units 325</p> <p>8.3 n-Type Polymers 328</p> <p>8.4 Conclusion and Outlook 330</p> <p>References 331</p> <p><b>9 Single-Component Organic Solar Cells 335</b></p> <p><i>Guitao Feng, Yiting Guo, and Weiwei Li</i></p> <p>9.1 Introduction 335</p> <p>9.2 Single-Component Conjugated Materials for SCOSCs 336</p> <p>9.2.1 Molecular Dyads 336</p> <p>9.2.1.1 Fullerene-Based “In-Chain” Molecular Dyads 336</p> <p>9.2.1.2 Fullerene-Based “Side-Chain” D–A Molecular Dyads 339</p> <p>9.2.1.3 PBI-Based Molecular Dyads 341</p> <p>9.2.2 Block Copolymers 345</p> <p>9.2.3 Double-Cable Conjugated Polymers 350</p> <p>9.3 Morphological Studies of the Photo-Active Layers in the SCOSCs 361</p> <p>9.3.1 Morphological Studies of the Molecular Dyads in SCOSCs 362</p> <p>9.3.2 Morphological Studies of the Block Copolymers in SCOSCs 366</p> <p>9.3.3 Morphological Studies of the Double-Cable Polymers in SCOSCs 367</p> <p>9.4 Perspective and Challenges of SCOSCs 375</p> <p>References 377</p> <p><b>10 Tandem Organic Solar Cells: Recent Progress and Challenge 381</b></p> <p><i>Lingxian Meng, Xiangjian Wan, and Yongsheng Chen</i></p> <p>10.1 Introduction 381</p> <p>10.2 Active Layer Materials in Tandem OSCs 383</p> <p>10.2.1 Tandem OSCs Based on Fullerene Acceptors 384</p> <p>10.2.2 Tandem OSCs Based on Non-fullerene Acceptors 393</p> <p>10.3 Interconnecting Layer Materials 397</p> <p>10.4 The Semi-Empirical Analysis of Tandem OSCs 398</p> <p>10.5 Conclusion and Outlook 400</p> <p>Acknowledgments 401</p> <p>References 401</p> <p><b>11 Large-Area Flexible Organic Solar Cells 405</b></p> <p><i>Shaorong Huang, Yufei Wang, Lintao Hou, and Lie Chen</i></p> <p>11.1 Introduction 405</p> <p>11.2 Material Requirements for Large-Area Flexible Organic Solar Cells 406</p> <p>11.2.1 Fullerene-Based Binary System 406</p> <p>11.2.2 Non-fullerene-Based Binary System 410</p> <p>11.2.3 Ternary System 413</p> <p>11.2.4 All-Polymer-Based System 415</p> <p>11.2.5 Design Strategies of the Materials for Large-Area Devices 417</p> <p>11.3 Flexible Electrodes and Substrates 417</p> <p>11.3.1 Flexible Substrates 418</p> <p>11.3.2 Flexible Transparent Electrode Designs 419</p> <p>11.3.2.1 Conducting Polymers 419</p> <p>11.3.2.2 Carbon Nanotubes 423</p> <p>11.3.2.3 Graphene 426</p> <p>11.3.2.4 Metallic Nanowires 429</p> <p>11.3.2.5 Hybrid Films 432</p> <p>11.4 Large-Area Flexible Device Fabrication 434</p> <p>11.4.1 Coating and Printing Methods 435</p> <p>11.4.1.1 Blade Coating 436</p> <p>11.4.1.2 Slot-Die Coating 438</p> <p>11.4.1.3 Inkjet Printing 440</p> <p>11.4.1.4 Spray Coating 441</p> <p>11.4.1.5 Screen Printing, Relief Printing, and Gravure Printing 442</p> <p>11.4.2 R2R Methodology 443</p> <p>11.5 Efficiency Loss in Large-Area Devices and Modules 445</p> <p>11.5.1 Electrical Loss 446</p> <p>11.5.2 Geometric Loss 447</p> <p>11.5.3 Optical Loss 448</p> <p>11.5.4 Additional Loss 448</p> <p>11.5.5 Modular Designs 448</p> <p>11.6 Conclusion and Outlook 449</p> <p>References 449</p> <p><b>12 Organic Photovoltaics for Indoor Applications 455</b></p> <p><i>Zhan′ ao Tan, Yinglong Bai, and Shan Jiang</i></p> <p>12.1 Introduction 455</p> <p>12.2 The Characteristics of Indoor Lighting Sources 458</p> <p>12.3 Testing System and Parameters for Indoor OPVs 460</p> <p>12.4 Research Progresses 461</p> <p>12.4.1 Fullerene-Based OPVs for Indoor Application 462</p> <p>12.4.2 Non-fullerene-Based OPVs for Indoor Application 472</p> <p>12.4.3 Multiple Blend OPVs for Indoor Application 474</p> <p>12.4.4 Interface Engineering of OPVs for Indoor Application 476</p> <p>12.4.5 Thick Film OPVs for Indoor Application 479</p> <p>12.4.6 Large-Area OPVs for Indoor Application 480</p> <p>12.5 Summary and Prospective 483</p> <p>References 484</p> <p><b>13 Interfacial Design for Efficient Organic Solar Cells 487</b></p> <p><i>Yao Liu, Menglan Lv, and Shengjian Liu</i></p> <p>13.1 Introduction 487</p> <p>13.2 The Mechanism and Effect of Interfacial Design 488</p> <p>13.2.1 The Role of Electrode Work-Function Difference 488</p> <p>13.2.2 The Interaction Between Metal Electrode and Interlayers 490</p> <p>13.2.3 Doping Effect on Energy Level Alignment 492</p> <p>13.2.4 Interface on BHJ Morphology and Device Stability 494</p> <p>13.2.5 Interfacial Morphology Characterizations 495</p> <p>13.3 Anode Interlayer Materials 496</p> <p>13.3.1 PEDOT:PSS 496</p> <p>13.3.2 Conjugated Polyelectrolytes 501</p> <p>13.3.3 Cross-Linkable Polymers 502</p> <p>13.3.4 Graphene Oxides (GOs) 504</p> <p>13.3.5 Metal Oxides (MOs) 505</p> <p>13.4 Cathode Interlayer Materials 506</p> <p>13.4.1 Organic Small Molecules 506</p> <p>13.4.2 Polymer Cathode Interlayer Materials 510</p> <p>13.4.3 Graphene Derivatives and Other Emerging Alternatives 512</p> <p>13.5 Conclusion and Outlook 513</p> <p>References 514</p> <p><b>14 Morphological Characterization and Manipulation of Organic Solar Cells 519</b></p> <p><i>Wei Li, Long Ye, and Tao Wang</i></p> <p>14.1 Introduction 519</p> <p>14.2 Morphological Characterization of Organic Solar Cells 521</p> <p>14.2.1 Microscopic Methods 521</p> <p>14.2.2 Scattering Methods 526</p> <p>14.2.3 Depth Profile 534</p> <p>14.3 Morphological Manipulation of Organic Solar Cells 538</p> <p>14.3.1 Thermal Annealing 538</p> <p>14.3.2 Solvent Vapor Annealing 540</p> <p>14.3.3 Solvent 542</p> <p>14.3.4 Solvent Additive 544</p> <p>14.3.5 Solid Additive 547</p> <p>14.3.6 Substrate Effect 549</p> <p>14.4 Conclusion 551</p> <p>References 552</p> <p><b>15 Operational Stability and Built-in Potential in Organic Solar Cells 555</b></p> <p><i>Weixia Lan, Bo Wu, and Furong Zhu</i></p> <p>15.1 Introduction 555</p> <p>15.2 Bimolecular Recombination in Organic Solar Cells 557</p> <p>15.2.1 Effect of Metal Oxide Interlayer on Cell Performance 557</p> <p>15.2.2 Charge Recombination Processes in Organic Solar Cells 560</p> <p>15.2.3 Bias-Dependent Charge Collection 564</p> <p>15.3 Metal/Organic Interfacial Exciton Dissociation in Organic Solar Cells 565</p> <p>15.3.1 Charge Collection in Regular Configuration Organic Solar Cells 566</p> <p>15.3.2 Charge Collection in Inverted Organic Solar Cells 569</p> <p>15.4 Improvement of Charge Collection and Performance Reproducibility 571</p> <p>15.4.1 Effect of Metal Oxide Interlayer on Cell Performance 571</p> <p>15.4.2 Suppression of ZnO Sub-Gap States 574</p> <p>15.5 Effect of Built-in Potential on Stability of Organic Solar Cells 579</p> <p>15.5.1 Interlayer Modification 580</p> <p>15.5.2 Built-in Potential in Organic Solar Cells 582</p> <p>15.5.3 Stability of Organic Solar Cells 584</p> <p>15.6 Summary 587</p> <p>Acknowledgment 587</p> <p>References 587</p> <p><b>16 Voltage Losses and Charge Transfer States in Donor–Acceptor Organic Solar Cells 591</b></p> <p><i>Hongbo Wu, Mengyang Li, Zaifei Ma, and Zheng Tang</i></p> <p>16.1 The Origin of Voc of Solar Cells 591</p> <p>16.1.1 Voltage Loss in an Ideal Solar Cell and the Upper Limit for Voc 591</p> <p>16.1.2 Voc and Voltage Loss in Non-ideal Solar Cells 594</p> <p>16.2 Voc of Organic Solar Cells 596</p> <p>16.2.1 Charge Transfer States in Organic Solar Cells 596</p> <p>16.2.2 Relation Between CT State and Voc of Organic Solar Cells 597</p> <p>16.2.3 Determining Factors of Kr and Knr for Organic Solar Cells 601</p> <p>16.2.4 Experimental Determination of CT State-Related Parameters 604</p> <p>16.3 Strategies to Reduce Vnr and Vr in Organic Solar Cells 606</p> <p>16.4 Summary 609</p> <p>Acknowledgments 610</p> <p>References 610</p> <p><b>17 Stability of Organic Solar Cells: From Fullerene Derivatives to Non-fullerene Acceptors 613</b></p> <p><i>Xiaoyan Du, Jing Guo, Jie Min, and Ning Li</i></p> <p>17.1 Introduction 613</p> <p>17.2 Factors Limiting the Stability of Organic Solar Cells 614</p> <p>17.2.1 Extrinsic Stresses 614</p> <p>17.2.1.1 Light Effect 614</p> <p>17.2.1.2 Thermal Effect 615</p> <p>17.2.1.3 Environmental Effect 615</p> <p>17.2.1.4 Mechanical Stress Effect 615</p> <p>17.2.2 Intrinsic Factors 616</p> <p>17.3 Stability Evaluation Protocols 617</p> <p>17.4 Progress in Developing Stable Organic Solar Cells 618</p> <p>17.4.1 Development of Organic Photovoltaic Materials with Stable Microstructure Morphology 618</p> <p>17.4.1.1 Organic Solar Cells Based on Fullerene Acceptors 621</p> <p>17.4.1.2 Organic Solar Cells Based on Non-fullerene Acceptors 623</p> <p>17.4.1.3 Organic Solar Cells Based on Polymeric Acceptors 625</p> <p>17.4.2 Strategies to Enhance the Morphological Stability of Organic Solar Cells 625</p> <p>17.4.2.1 Introducing Hydrogen Bonding in the Photo-Active Materials 627</p> <p>17.4.2.2 Chemically Linked Donor and Acceptor as a Single-Component Photoactive Layer 627</p> <p>17.4.2.3 Cross-Linking 629</p> <p>17.4.2.4 Solid Additives 631</p> <p>17.4.2.5 Solvent Additives 631</p> <p>17.4.2.6 Ternary and Multiple Composites 633</p> <p>17.4.2.7 Organic Nanoparticles 633</p> <p>17.4.2.8 Stratified Photoactive Layer Structure 633</p> <p>17.5 Recent Progress on Developing Organic Solar Cells with Excellent Stability 635</p> <p>17.6 Summary and Outlook 639</p> <p>References 640</p> <p><b>18 Potential Applications of Organic Solar Cells 645</b></p> <p><i>Chengyi Xiao and Weiwei Li</i></p> <p>18.1 Introduction 645</p> <p>18.2 Building-Integrated OSCs 647</p> <p>18.2.1 Solar Parks 648</p> <p>18.2.2 Smart Windows 650</p> <p>18.2.3 Solar Trees 651</p> <p>18.2.4 Greenhouse and Photosynthesis 652</p> <p>18.3 Wearable-Integrated OSCs 655</p> <p>18.3.1 Portable Device Photovoltaics 655</p> <p>18.3.2 Implantable and Wearable Self-Powered Sensors 656</p> <p>18.3.3 OSC Textile Toward Smart Clothing 658</p> <p>18.4 OSCs-Integrated Energy Storage System 661</p> <p>18.4.1 Planar Stacked OSCs-Integrated ESS 662</p> <p>18.4.2 Fiber-Based OSCs-Integrated ESS 665</p> <p>18.5 Other Applications 666</p> <p>18.5.1 OSCs-Driven Water Splitting 666</p> <p>18.5.2 OSCs-Integrated Glasses 668</p> <p>18.6 Conclusion and Outlook 668</p> <p>References 672</p> <p>Index 677</p>
<p><b><i>Liming Ding, PhD,</b> is Full Professor at the National Center for Nanoscience and Technology. His research is focused on optoelectronic materials and devices, organic solar cells, perovskite solar cells, and photodetectors. He received his doctorate from the University of Science and Technology of China. </i></p>
<p><b>A timely and singular resource on the latest advances in organic photovoltaics</b></p> <p>Organic photovoltaics are gaining widespread attention due to their solution processability, tunable electronic properties, low temperature manufacture, and cheap and light materials. Their wide range of potential applications may result in significant near-term commercialization of the technology. <p>In <i>Organic Solar Cells: Materials Design, Technology and Commercialization</i>, renowned scientist Dr. Liming Ding delivers a comprehensive exploration of organic solar cells, including discussions of their key materials, mechanisms, molecular designs, stability features, and applications. The book presents the most state-of-the-art developments in the field alongside fulsome treatments of the commercialization potential of various organic solar cell technologies. <p>The author also provides: <ul><li>Thorough introductions to fullerene acceptors, polymer donors, and non-fullerene small molecule acceptors</li> <li>Comprehensive explorations of p-type molecular photovoltaic materials and polymer-polymer solar cell materials, devices, and stability</li> <li>Practical discussions of electron donating ladder-type heteroacenes for photovoltaic applications</li> <li>In-depth examinations of chlorinated organic and single-component organic solar cells, as well as the morphological characterization and manipulation of organic solar cells</li></ul> <p> Perfect for materials scientists, organic and solid-state chemists, and solid-state physicists, <i>Organic Solar Cells: Materials Design, Technology and Commercialization</i> will also earn a place in the libraries of surface chemists and physicists and electrical engineers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €