Details

Biotechnology for Zero Waste


Biotechnology for Zero Waste

Emerging Waste Management Techniques
1. Aufl.

von: Chaudhery Mustansar Hussain, Ravi Kumar Kadeppagari

169,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 05.01.2022
ISBN/EAN: 9783527832057
Sprache: englisch
Anzahl Seiten: 624

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Biotechnology for Zero Waste</b> <p><b>The use of biotechnology to minimize waste and maximize resource valorization</B> <p>In<i> Biotechnology for Zero Waste: Emerging Waste Management Techniques,</i> accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. <p>Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. <i>Biotechnology for Zero Waste</i> effectively guides readers on the path to creating sustainable products from waste. The book also includes: <ul><li>A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production</li> <li>Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste</li> <li>Practical discussions of bioreactors for zero waste and waste2energy with biotechnology</li> <li>An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies</li></ul> <p>Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, <i>Biotechnology for Zero Waste: Emerging Waste Management Techniques</i> will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.
<p>Foreword xxvii</p> <p>Preface xxix</p> <p><b>Part I Modern Perspective of Zero Waste Drives </b><b>1</b></p> <p><b>1 Anaerobic Co-digestion as a Smart Approach for Enhanced Biogas Production and Simultaneous Treatment of Different Wastes </b><b>3<br /></b><i>S. Bharathi and B. J. Yogesh</i></p> <p>1.1 Introduction 3</p> <p>1.2 Anaerobic Co-digestion (AcD) 5</p> <p>1.3 Digester Designs 13</p> <p>1.4 Digestate/Spent Slurry 14</p> <p>1.5 Conclusion 15</p> <p>References 15</p> <p><b>2 Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste </b><b>19<br /></b><i>Chandan Kumar Sahu, Mukta Hugar, and Ravi Kumar Kadeppagari</i></p> <p>2.1 Introduction 19</p> <p>2.2 Food Waste for the Production of Biodegradable Plastics and Biogas 19</p> <p>2.3 Dairy and Milk Waste for the Production of Biodegradable Plastics and Biogas 22</p> <p>2.4 Sugar and Starch Waste for the Production of Biodegradable Plastics and Biogas 23</p> <p>2.5 Wastewater for the Production of Biodegradable Plastics and Bioenergy 25</p> <p>2.6 Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste 27</p> <p>2.7 Conclusions 28</p> <p>References 28</p> <p><b>3 Immobilized Enzymes for Bioconversion of Waste to Wealth </b><b>33<br /></b><i>Angitha Balan, Vaisiri V. Murthy, and Ravi Kumar Kadeppagari</i></p> <p>3.1 Introduction 33</p> <p>3.2 Enzymes as Biocatalysts 34</p> <p>3.3 Immobilization of Enzymes 35</p> <p>3.4 Bioconversion of Waste to Useful Products by Immobilized Enzymes 38</p> <p>3.5 Applications of Nanotechnology for the Immobilization of Enzymes and Bioconversion 41</p> <p>3.6 Challenges and Opportunities 43</p> <p>Acknowledgments 43</p> <p>References 44</p> <p><b>Part II Bioremediation for Zero Waste </b><b>47</b></p> <p><b>4 Bioremediation of Toxic Dyes for Zero Waste </b><b>49<br /></b><i>Venkata Krishna Bayineni</i></p> <p>4.1 Introduction 49</p> <p>4.2 Background to Dye(s) 50</p> <p>4.3 The Toxicity of Dye(s) 50</p> <p>4.4 Bioremediation Methods 51</p> <p>4.5 Conclusion 63</p> <p>References 63</p> <p><b>5 Bioremediation of Heavy Metals </b><b>67<br /></b><i>Tanmoy Paul and Nimai C. Saha</i></p> <p>5.1 Introduction 67</p> <p>5.2 Ubiquitous Heavy Metal Contamination – The Global Scenario 68</p> <p>5.3 Health Hazards from Heavy Metal Pollution 69</p> <p>5.4 Decontaminating Heavy Metals – The Conventional Strategies 71</p> <p>5.5 Bioremediation – The Emerging Sustainable Strategy 72</p> <p>5.6 Conclusion 78</p> <p>References 79</p> <p><b>6 Bioremediation of Pesticides Containing Soil and Water </b><b>83<br /></b><i>Veena S. More, Allwin Ebinesar Jacob Samuel Sehar, Anagha P. Sheshadri, Sangeetha Rajanna, Anantharaju Kurupalya Shivram, Aneesa Fasim, Archana Rao, Prakruthi Acharya, Sikandar Mulla, and Sunil S. More</i></p> <p>6.1 Introduction 83</p> <p>6.2 Pesticide Biomagnification and Consequences 84</p> <p>6.3 Ill Effects of Biomagnification 84</p> <p>6.4 Bioremediation 85</p> <p>6.5 Methods Used in Bioremediation Process 86</p> <p>6.6 Bioremediation Process Using Biological Mediators 88</p> <p>6.7 Factors Affecting Bioremediation 90</p> <p>6.8 Future Perspectives 91</p> <p>References 91</p> <p><b>7 Bioremediation of Plastics and Polythene in Marine Water </b><b>95<br /></b><i>Tarun Gangar and Sanjukta Patra</i></p> <p>7.1 Introduction 95</p> <p>7.2 Plastic Pollution: A Threat to the Marine Ecosystem 96</p> <p>7.3 Micro- and Nanoplastics 96</p> <p>7.4 Microbes Involved in the Degradation of Plastic and Related Polymers 99</p> <p>7.5 Enzymes Responsible for Biodegradation 101</p> <p>7.6 Mechanism of Biodegradation 102</p> <p>7.7 Biotechnology in Plastic Bioremediation 104</p> <p>7.8 Future Perspectives: Development of More Refined Bioremediation Technologies as a Step Toward Zero Waste Strategy 106</p> <p>Acknowledgment 106</p> <p>Conflict of Interest 107</p> <p>References 107</p> <p><b>Part III Biological Degradation Systems </b><b>111</b></p> <p><b>8 Microbes and their Consortia as Essential Additives for the Composting of Solid Waste </b><b>113<br /></b><i>Mansi Rastogi and Sheetal Barapatre</i></p> <p>8.1 Introduction 113</p> <p>8.2 Classification of Solid Waste 113</p> <p>8.3 Role of Microbes in Composting 114</p> <p>8.4 Effect of Microbial Consortia on Solid Waste Composting 116</p> <p>8.5 Benefits of Microbe-Amended Compost 119</p> <p>References 119</p> <p><b>9 Biodegradation of Plastics by Microorganisms </b><b>123<br /></b><i>Md. Anisur R. Mazumder, Md. Fahad Jubayer, and Thottiam V. Ranganathan</i></p> <p>9.1 Introduction 123</p> <p>9.2 Definition and Classification of Plastics 124</p> <p>9.3 Biodegradation of Plastics 128</p> <p>9.4 Current Trends and Future Prospects 136</p> <p>List of Abbreviations 137</p> <p>References 138</p> <p><b>10 Enzyme Technology for the Degradation of Lignocellulosic Waste </b><b>143<br /></b><i>Swarrna Haldar and Soumitra Banerjee</i></p> <p>10.1 Introduction 143</p> <p>10.2 Enzymes Required for the Degradation of Lignocellulosic Waste 144</p> <p>10.3 Utilizing Enzymes for the Degradation of Lignocellulosic Waste 150</p> <p>10.4 Conclusion 150</p> <p>References 150</p> <p><b>11 Usage of Microalgae: A Sustainable Approach to Wastewater Treatment </b><b>155<br /></b><i>Kumudini B. Satyan, Michael V. L. Chhandama, and Dhanya V. Ranjit</i></p> <p>11.1 Introduction 155</p> <p>11.2 Microalgae for Wastewater Treatment 158</p> <p>11.3 Cultivation of Microalgae in Wastewater 162</p> <p>11.4 Algae as a Source of Bioenergy 164</p> <p>11.5 Conclusion 166</p> <p>References 166</p> <p><b>Part IV Bioleaching and Biosorption of Waste: Approaches and Utilization </b><b>171</b></p> <p><b>12 Microbes and Agri-Food Waste as Novel Sources of Biosorbents </b><b>173<br /></b><i>Simranjeet Singh, Praveen C. Ramamurthy, Vijay Kumar, Dhriti Kapoor, Vaishali Dhaka, and Joginder Singh</i></p> <p>12.1 Introduction 173</p> <p>12.2 Conventional Methods for Agri-Food Waste Treatment 175</p> <p>12.3 Application of the Biosorption Processes 176</p> <p>12.4 Use of Genetically Engineered Microorganisms and Agri-Food Waste 178</p> <p>12.5 Biosorption Potential of Microbes and Agri-Food Waste 179</p> <p>12.6 Modification, Parameter Optimization, and Recovery 180</p> <p>12.7 Immobilization of Biosorbent 182</p> <p>12.8 Conclusions 183</p> <p>References 185</p> <p><b>13 Biosorption of Heavy Metals and Metal-Complexed Dyes Under the Influence of Various Physicochemical Parameters </b><b>189<br /></b><i>Allwin Ebinesar Jacob Samuel Sehar, Veena S. More, Amrutha Gudibanda Ramesh, and Sunil S. More</i></p> <p>13.1 Introduction 189</p> <p>13.2 Mechanisms Involved in Biosorption of Toxic Heavy Metal Ions and Dyes 191</p> <p>13.3 Chemistry of Heavy Metals in Water 191</p> <p>13.4 Chemistry of Metal-Complexed Dyes 192</p> <p>13.5 Microbial Species Used for the Removal of Metals and Metal-Complexed Dyes 192</p> <p>13.6 Industrial Application on the Biosorption of Heavy Metals 195</p> <p>13.7 Biosorption of Reactive Dyes 198</p> <p>13.8 Metal-Complexed Dyes 199</p> <p>13.9 Biosorption of Metal-Complexed Dyes 200</p> <p>13.10 Conclusion 203</p> <p>References 203</p> <p><b>14 Recovery of Precious Metals from Electronic and Other Secondary Solid Waste by Bioleaching Approach </b><b>207<br /></b><i>Dayanand Peter, Leonard Shruti Arputha Sakayaraj, and Thottiam Vasudevan Ranganathan</i></p> <p>14.1 Introduction 207</p> <p>14.2 What Is Bioleaching? 208</p> <p>14.3 E-Waste, What Are They? 210</p> <p>14.4 Role of Microbes in Bioleaching of E-Waste 212</p> <p>14.5 Application of Bioleaching for Recovery of Individual Metals 214</p> <p>14.6 Large-Scale Bioleaching of E-Waste 215</p> <p>14.7 Future Aspects 215</p> <p>List of Abbreviations 216</p> <p>References 216</p> <p><b>Part V Bioreactors for Zero Waste </b><b>219</b></p> <p><b>15 Photobiological Reactors for the Degradation of Harmful Compounds in Wastewaters </b><b>221<br /></b><i>Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepati Haritha</i></p> <p>15.1 Introduction 221</p> <p>15.2 Photobiological Agents and Methods Used in PhotoBiological Reactors 222</p> <p>15.3 Conclusion 238</p> <p>Acknowledgment 238</p> <p>References 239</p> <p><b>16 Bioreactors for the Production of Industrial Chemicals and Bioenergy Recovery from Waste </b><b>241<br /></b><i>Gargi Ghoshal</i></p> <p>16.1 Introduction 241</p> <p>16.2 Basic Biohydrogen-Manufacturing Technologies and their Deficiency 244</p> <p>16.3 Overview of Anaerobic Membrane Bioreactors 246</p> <p>16.4 Factors Affecting Biohydrogen Production in AnMBRs 248</p> <p>16.5 Techniques to Improve Biohydrogen Production 252</p> <p>16.6 Environmental and Economic Assessment of BioHydrogen Production in AnMBRs 253</p> <p>16.7 Future Perspectives of Biohydrogen Production 253</p> <p>16.8 Products Based on Solid-State Fermenter 253</p> <p>16.9 Koji Fermenters for SSF for Production of Different Chemicals 257</p> <p>16.10 Recent Research on Biofuel Manufacturing in Bioreactors Other than Biohydrogen 258</p> <p>References 259</p> <p><b>Part VI Waste2Energy with Biotechnology: Feasibilities and Challenges </b><b>263</b></p> <p><b>17 Utilization of Microbial Potential for Bioethanol Production from Lignocellulosic Waste </b><b>265<br /></b><i>Manisha Rout, Bithika Sardar, Puneet K. Singh, Ritesh Pattnaik, and Snehasish Mishra</i></p> <p>17.1 Introduction 265</p> <p>17.2 Processing of Lignocellulosic Biomass to Ethanol 268</p> <p>17.3 Biological Pretreatment 271</p> <p>17.4 Enzymatic Hydrolysis 276</p> <p>17.5 Fermentation 277</p> <p>17.6 Conclusion and Future Prospects 279</p> <p>References 280</p> <p><b>18 Advancements in Bio-hydrogen Production from Waste Biomass </b><b>283<br /></b><i>Shyamali Sarma and Sankar Chakma</i></p> <p>18.1 Introduction 283</p> <p>18.2 Routes of Production 285</p> <p>18.3 Biomass as Feedstock for Biohydrogen 286</p> <p>18.4 Factors Affecting Biohydrogen 288</p> <p>18.5 Strategies to Enhance Microbial Hydrogen Production 292</p> <p>18.6 Future Perspectives and Conclusion 297</p> <p>References 297</p> <p><b>19 Reaping of Bio-Energy from Waste Using Microbial Fuel Cell Technology </b><b>303<br /></b><i>Senthilkumar Kandasamy, Naveenkumar Manickam, and Samraj Sadhappa</i></p> <p>19.1 Introduction 303</p> <p>19.2 Microbial Fuel Cell Components and Process 306</p> <p>19.3 Application of Microbial Fuel Cell to the Social Relevance 309</p> <p>19.4 Conclusion and Future Perspectives 311</p> <p>References 311</p> <p><b>20 Application of Sustainable Micro-Algal Species in the Production of Bioenergy for Environmental Sustainability </b><b>315<br /></b><i>Senthilkumar Kandasamy, Jayabharathi Jayabalan, and Balaji Dhandapani</i></p> <p>20.1 Introduction 315</p> <p>20.2 Cultivation and Processing of Microalgae 317</p> <p>20.3 Genetic Engineering for the Improvement of Microalgae 326</p> <p>20.4 Conclusion and Challenges in Commercializing Microalgae 327</p> <p>References 327</p> <p><b>Part VII Emerging Technologies (Nano Biotechnology) for Zero Waste </b><b>329</b></p> <p><b>21 Nanomaterials and Biopolymers for the Remediation of Polluted Sites </b><b>331<br /></b><i>Minchitha K. Umesha, Sadhana Venkatesh, and Swetha Seshagiri</i></p> <p>21.1 Introduction 331</p> <p>21.2 Water Remediation 332</p> <p>21.3 Soil Remediation 336</p> <p>References 339</p> <p><b>22 Biofunctionalized Nanomaterials for Sensing and Bioremediation of Pollutants </b><b>343<br /></b><i>Satyam and S. Patra</i></p> <p>22.1 Introduction 343</p> <p>22.2 Synthesis and Surface Modification Strategies for Nanoparticles 345</p> <p>22.3 Binding Techniques for Biofunctionalization of Nanoparticles 345</p> <p>22.4 Commonly Functionalized Biomaterials and Their Role in Remediation 348</p> <p>22.5 Biofunctionalized Nanoparticle-Based Sensors for Environmental Application 354</p> <p>22.6 Limitation of Biofunctionalized Nanoparticles for Environmental Application 355</p> <p>22.7 Future Perspective 356</p> <p>22.8 Conclusion 356</p> <p>Acknowledgment 357</p> <p>References 357</p> <p><b>23 Biogeneration of Valuable Nanomaterials from Food and Other Wastes </b><b>361<br /></b><i>Amrutha B. Mahanthesh, Swarrna Haldar, and Soumitra Banerjee</i></p> <p>23.1 Introduction 361</p> <p>23.2 Green Synthesis of Nanomaterials by Using Food and Agricultural Waste 362</p> <p>23.3 Synthesis of Bionanoparticles from Food and Agricultural Waste 362</p> <p>23.4 Conclusion 365</p> <p>Acknowledgments 365</p> <p>References 365</p> <p><b>24 Biosynthesis of Nanoparticles Using Agriculture and Horticulture Waste </b><b>369<br /></b><i>Vinayaka B. Shet, Keshava Joshi, Lokeshwari Navalgund, and Ujwal Puttur</i></p> <p>24.1 Introduction 369</p> <p>24.2 Agricultural and Horticultural Waste 370</p> <p>24.3 Biosynthesis of Nanoparticle 370</p> <p>24.4 Characterization of Biosynthesized Nanoparticles 373</p> <p>24.5 Applications of Biosynthesized Nanoparticles 375</p> <p>References 377</p> <p><b>25 Nanobiotechnology – A Green Solution </b><b>379<br /></b><i>Baishakhi De and Tridib K. Goswami</i></p> <p>25.1 Introduction 379</p> <p>25.2 Nanotechnology and Nanobiotechnology – The Green Processes and Technologies 381</p> <p>25.3 The Versatile Role of Nanotechnology and Nanobiotechnology 385</p> <p>25.4 Nanotechnologies inWaste Reduction and Management 390</p> <p>25.5 Conclusion 393</p> <p>References 393</p> <p><b>26 Novel Biotechnological Approaches for Removal of Emerging Contaminants </b><b>397<br /></b><i>Sangeetha Gandhi Sivasubramaniyan, Senthilkumar Kandasamy, and Naveen kumar Manickam</i></p> <p>26.1 Introduction 397</p> <p>26.2 Classification of Emerging Contaminants 397</p> <p>26.3 Various Sources of ECs 399</p> <p>26.4 Need of Removal of ECs 400</p> <p>26.5 Methods of Treatment of EC 400</p> <p>26.6 Biotechnological Approaches for the Removal of ECs 401</p> <p>26.7 Conclusion 406</p> <p>References 407</p> <p><b>Part VIII Economics and Commercialization of Zero Waste Biotechnologies </b><b>409</b></p> <p><b>27 Bioconversion of Waste to Wealth as Circular Bioeconomy Approach </b><b>411<br /></b><i>Dayanand Peter, Jaya Rathinam, and Ranganathan T. Vasudevan</i></p> <p>27.1 Introduction 411</p> <p>27.2 Biovalorization of Organic Waste 413</p> <p>27.3 Bioeconomy Waste Production and Management 414</p> <p>27.4 Concerns About Managing Food Waste in Achieving Circular Bioeconomy Policies 416</p> <p>27.5 Economics of Bioeconomy 417</p> <p>27.6 Entrepreneurship in Bioeconomy 417</p> <p>27.7 Conclusion 418</p> <p>List of Abbreviations 418</p> <p>References 418</p> <p><b>28 Bioconversion of Food Waste to Wealth – Circular Bioeconomy Approach </b><b>421<br /></b><i>Rajam Ramasamy and Parthasarathi Subramanian</i></p> <p>28.1 Introduction 421</p> <p>28.2 Circular Bioeconomy 422</p> <p>28.3 Food Waste Management Current Practices 424</p> <p>28.4 Techniques for Bioconversion of Food Waste Toward Circular Bioeconomy Approach 425</p> <p>28.5 Conclusion 435</p> <p>References 435</p> <p><b>29 Zero-Waste Biorefineries for Circular Economy </b><b>439<br /></b><i>Puneet K. Singh, Pooja Shukla, Sunil K. Verma, Snehasish Mishra, and Pankaj K. Parhi</i></p> <p>29.1 Introduction 439</p> <p>29.2 Bioenergy, Bioeconomy, and Biorefineries 440</p> <p>29.3 Bioeconomic Strategies Around the World 443</p> <p>29.4 Challenging Factors and Impact on Bioeconomy 445</p> <p>29.5 Effect of Increased CO2 Concentration, Sequestration, and Circular Economy 447</p> <p>29.6 Carbon Sequestration in India 447</p> <p>29.7 Methods for CO2 Capture 448</p> <p>29.8 Conclusion and Future Approach 451</p> <p>References 452</p> <p><b>30 Feasibility and Economics of Biobutanol from Lignocellulosic and Starchy Residues </b><b>457<br /></b><i>Sandesh Kanthakere</i></p> <p>30.1 Introduction 457</p> <p>30.2 Opportunities and Future of Zero Waste Biobutanol 458</p> <p>30.3 Generation of Lignocellulosic and Starchy Wastes 459</p> <p>30.4 Value Added Products from Lignocellulose and Starchy Residues 462</p> <p>30.5 Conclusion 468</p> <p>References 468</p> <p><b>31 Critical Issues That Can Underpin the Drive for Sustainable Anaerobic Biorefinery </b><b>473<br /></b><i>Spyridon Achinas</i></p> <p>31.1 Introduction 473</p> <p>31.2 Biogas – An Energy Vector 474</p> <p>31.3 Anaerobic Biorefinery Approach 475</p> <p>31.4 Technological Trends and Challenges in the Anaerobic Biorefinery 477</p> <p>31.5 Perspectives Toward the Revitalization of the Anaerobic Biorefineries 482</p> <p>31.6 Conclusion 485</p> <p>Conflict of Interest 485</p> <p>References 485</p> <p><b>32 Microbiology of Biogas Production from Food Waste: Current Status, Challenges, and Future Needs </b><b>491<br /></b><i>Vanajakshi Vasudeva, Inchara Crasta, and Sandeep N. Mudliar</i></p> <p>32.1 Introduction 491</p> <p>32.2 Fundamentals for Accomplishing National Biofuel Policy 492</p> <p>32.3 Significances of Anaerobic Microbiology in Biogas Process 493</p> <p>32.4 Microbiology and Physico-Chemical Process in AD 493</p> <p>32.5 Pretreatment 496</p> <p>32.6 Variations in Anaerobic Digestion 496</p> <p>32.7 Factors Influencing Biogas Production 497</p> <p>32.8 Application of Metagenomics 502</p> <p>32.9 Conclusions and Future Needs 504</p> <p>List of Abbreviations 504</p> <p>References 505</p> <p><b>Part IX Green and Sustainable future (Zero Waste and Zero Emissions) </b><b>507</b></p> <p><b>33 Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products </b><b>509<br /></b><i>Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari</i></p> <p>33.1 Introduction 509</p> <p>33.2 Treatment 510</p> <p>33.3 Evaluation of Waste Cooking Oil and Valorized Cooking Oil 511</p> <p>33.4 Versatile Products as an Outcome of Valorized Waste Cooking Oil 512</p> <p>33.5 Conclusion 516</p> <p>References 517</p> <p><b>34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials </b><b>521<br /></b><i>A. Jagannath and Pooja J. Rao</i></p> <p>34.1 Introduction 521</p> <p>34.2 Importance 522</p> <p>34.3 Worldwide Initiatives 522</p> <p>34.4 Composition-Based Solutions and Approaches 523</p> <p>34.5 Biochemicals 523</p> <p>34.6 Biofuels 526</p> <p>34.7 Packaging Materials and Bioplastics 526</p> <p>34.8 Green Valorization 531</p> <p>34.9 Conclusion 531</p> <p>References 532</p> <p><b>35 Edible Coatings and Films from Agricultural and Marine Food Wastes </b><b>543<br /></b><i>C. Naga Deepika, Murlidhar Meghwal, Pramod K. Prabhakar, Anurag Singh, Rekha Rani, and Ravi Kumar Kadeppagari</i></p> <p>35.1 Introduction 543</p> <p>35.2 Sources of Food Waste 544</p> <p>35.3 Film/Coating Made from Agri-Food Waste 545</p> <p>35.4 Film/Coating Materials from Marine Biowaste 548</p> <p>35.5 Film/Coating Formation Methods 550</p> <p>35.6 Conclusion 552</p> <p>References 553</p> <p><b>36 Valorization of By-Products of Milk Fat Processing </b><b>557<br /></b><i>Menon R. Ravindra, Monika Sharma, Rajesh Krishnegowda, and Amanchi Sangma</i></p> <p>36.1 Introduction 557</p> <p>36.2 Processing of Milk Fat and Its By-Products 558</p> <p>36.3 Valorization of Buttermilk 558</p> <p>36.4 Valorization of Ghee Residue 562</p> <p>36.5 Conclusion 565</p> <p>References 565</p> <p>Index 569</p>
<p><i><b>Chaudhery Mustansar Hussain, PhD, </b>is Adjunct Professor and Lab Director in the Department of Chemistry & Environmental Sciences at the New Jersey Institute of Technology (NJIT), Newark, New Jersey, USA.</i></p> <p><i><B>Ravi Kumar Kadeppagari, PhD,</B> is a Professor at Centre for Incubation Innovation Research and Consultancy (CIIRC), and Head of the Department of Food Technology, Jyothy Institute of Technology, Bengaluru, Karnataka, India.</i>
<p><b>The use of biotechnology to minimize waste and maximize resource valorization</B></p> <p>In<i> Biotechnology for Zero Waste: Emerging Waste Management Techniques,</i> accomplished environmental researchers Drs. Chaudhery Mustansar Hussain and Ravi Kumar Kadeppagari deliver a robust exploration of the role of biotechnology in reducing waste and creating a zero-waste environment. The editors provide resources covering perspectives in waste management like anaerobic co-digestion, integrated biosystems, immobilized enzymes, zero waste biorefineries, microbial fuel cell technology, membrane bioreactors, nano biomaterials, and more. <p>Ideal for sustainability professionals, this book comprehensively sums up the state-of-the-art biotechnologies powering the latest advances in zero-waste strategies. The renowned contributors address topics like bioconversion and biotransformation and detail the concept of the circular economy. <i>Biotechnology for Zero Waste</i> effectively guides readers on the path to creating sustainable products from waste. The book also includes: <ul><li>A thorough introduction to modern perspectives on zero waste drives, including anaerobic co-digestion as a smart approach for enhancing biogas production</li> <li>Comprehensive explorations of bioremediation for zero waste, biological degradation systems, and bioleaching and biosorption of waste</li> <li>Practical discussions of bioreactors for zero waste and waste2energy with biotechnology</li> <li>An in-depth examination of emerging technologies, including nanobiotechnology for zero waste and the economics and commercialization of zero waste biotechnologies</li></ul> <p>Perfect for process engineers, natural products, environmental, soil, and inorganic chemists, <i>Biotechnology for Zero Waste: Emerging Waste Management Techniques</i> will also earn a place in the libraries of food technologists, biotechnologists, agricultural scientists, and microbiologists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €