Details

The 4Ds of Energy Transition


The 4Ds of Energy Transition

Decarbonization, Decentralization, Decreasing Use, and Digitalization
1. Aufl.

von: Muhammad Asif

106,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 15.07.2022
ISBN/EAN: 9783527831449
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>The 4Ds of Energy Transition</b></p> <p><b>Enables readers to understand technology-driven approaches that address the challenges of today’s energy scenario and the shift towards sustainable energy transition </b></p> <p>This book provides a comprehensive account of the characteristics of energy transition, covering the latest advancements, trends, and practices around the topic. It charts the path to global energy sustainability based on existing technology by focusing on the four dynamic approaches of decarbonization, decreasing use, decentralization, and digitalization, plus the important technical, economic, social and policy perspectives surrounding those approaches.</p> <p>Each technology is demonstrated with an introduction and a set of specific chapters. The work appropriately incorporates up-to-date data, case studies, and comparative assessments to further aid in reader comprehension. Sample topics discussed within the work by key thinkers and researchers in the broader fields of energy include:</p> <ul> <li>Renewable energy and sustainable energy future</li> <li>Decarbonization in energy sector</li> <li>Hydrogen and fuel cells</li> <li>Electric mobility and sustainable transportation</li> <li>Energy conservation and management</li> <li>Distributed and off-grid generation, energy storage, and batteries</li> <li>Digitalization in energy sector; smart meters, smart grids, blockchain</li> </ul> <p>This book is an ideal professional resource for engineers, academics, and policy makers working in areas related to the development of energy solutions.</p>
<p>Preface xv</p> <p>Acknowledgement xvi</p> <p>Foreword xvii</p> <p><b>1 Introduction to the Four-Dimensional Energy Transition 1<br /> </b><i>Muhammad Asif</i></p> <p>1.1 Energy: Resources and Conversions 1</p> <p>1.2 Climate Change in Focus 3</p> <p>1.3 The Unfolding Energy Transition 4</p> <p>1.4 The Four Dimensions of the Twenty-First Century Energy Transition 6</p> <p>1.4.1 Decarbonization 7</p> <p>1.4.2 Decentralization 7</p> <p>1.4.3 Digitalization 8</p> <p>1.4.4 Decreasing Energy Use 8</p> <p>1.5 Conclusions 8</p> <p>References 9</p> <p><b>Part I Decarbonization 11</b></p> <p><b>2 Global Energy Transition and Experiences from China and Germany 13<br /> </b><i>Heiko Thomas and Bing Xue</i></p> <p>2.1 Global Energy Transition 13</p> <p>2.2 China 17</p> <p>2.2.1 How to Achieve Carbon Neutrality Before 2060 and Keep the World’s Largest Economy Running 17</p> <p>2.2.2 China as the World’s Leader in Renewable Installations 19</p> <p>2.2.3 Particular Measures to Reduce GHG Emissions 20</p> <p>2.3 Germany 23</p> <p>2.3.1 Climate Action and GHG Emission Reduction Targets 23</p> <p>2.3.2 System Requirements to Achieve the GHG Emission Reduction Goals 24</p> <p>2.3.3 Potential for GHG Emission Reduction in the Building Sector 27</p> <p>2.3.4 Underachieving in the Transport Sector 27</p> <p>2.3.5 A New Emission Trading Scheme Specifically Tackles the Heating and Transport Sectors 29</p> <p>2.4 Comparing Energy Transitions in China and Germany 30</p> <p>2.4.1 Different Strategies and Boundary Conditions 30</p> <p>2.4.2 Comparing the Mobility Sector 32</p> <p>2.4.3 Policy Instruments and Implementation 33</p> <p>2.5 Summary and Final Remarks 37</p> <p>References 38</p> <p><b>3 Decarbonization in the Energy Sector 41<br /> </b><i>Muhammad Asif</i></p> <p>3.1 Decarbonization 41</p> <p>3.2 Decarbonization Pathways 42</p> <p>3.2.1 Renewable Energy 43</p> <p>3.2.1.1 Solar Energy 43</p> <p>3.2.1.2 Wind Power 44</p> <p>3.2.1.3 Hydropower 44</p> <p>3.2.2 Electric Mobility 44</p> <p>3.2.3 Hydrogen and Fuel Cells 45</p> <p>3.2.4 Energy Storage 46</p> <p>3.2.5 Energy Efficiency 46</p> <p>3.2.6 Decarbonization of Fossil Fuel Sector 46</p> <p>3.3 Decarbonization: Developments and Trends 47</p> <p>References 48</p> <p><b>4 Renewable Technologies: Applications and Trends 51<br /> </b><i>Muhammad Asif</i></p> <p>4.1 Introduction 51</p> <p>4.2 Overview of Renewable Technologies 52</p> <p>4.2.1 Solar Energy 52</p> <p>4.2.1.1 Solar PV 52</p> <p>4.2.1.2 Solar Thermal Energy 54</p> <p>4.2.2 Wind Power 57</p> <p>4.2.3 Hydropower 58</p> <p>4.2.3.1 Dam/Storage 59</p> <p>4.2.3.2 Run-of-the-River 59</p> <p>4.2.3.3 Pumped Storage 59</p> <p>4.2.4 Biomass 60</p> <p>4.2.5 Geothermal Energy 61</p> <p>4.2.6 Wave and Tidal Power 62</p> <p>4.3 Renewables Advancements and Trends 63</p> <p>4.3.1 Market Growth 63</p> <p>4.3.2 Economics 65</p> <p>4.3.3 Technological Advancements 65</p> <p>4.3.4 Power Density 67</p> <p>4.3.5 Energy Storage 67</p> <p>4.4 Conclusions 69</p> <p>References 69</p> <p><b>5 Fundamentals and Applications of Hydrogen and Fuel Cells 73<br /> </b><i>Bengt Sundén</i></p> <p>5.1 Introduction 73</p> <p>5.2 Hydrogen – General 74</p> <p>5.2.1 Production of Hydrogen 74</p> <p>5.2.2 Storage of Hydrogen 75</p> <p>5.2.3 Transportation of Hydrogen 76</p> <p>5.2.4 Concerns About Hydrogen 76</p> <p>5.2.5 Advantages of Hydrogen Energy 76</p> <p>5.2.6 Disadvantages of Hydrogen Energy 76</p> <p>5.3 Basic Electrochemistry and Thermodynamics 77</p> <p>5.4 Fuel Cells – Overview 78</p> <p>5.4.1 Types of Fuel Cells 79</p> <p>5.4.2 Proton Exchange Membrane Fuel Cells (PEMFC) or Polymer Electrolyte Fuel Cells (PEFC) 83</p> <p>5.4.2.1 Performance of a PEMFC 83</p> <p>5.4.3 Solid Oxide Fuel Cells (SOFC) 83</p> <p>5.4.4 Comparison of PEMFCs and SOFCs 84</p> <p>5.4.5 Overall Description of Basic Transport Processes and Operations of a Fuel Cell 85</p> <p>5.4.5.1 Electrochemical Kinetics 85</p> <p>5.4.5.2 Heat and Mass Transfer 85</p> <p>5.4.5.3 Charge and Water Transport 86</p> <p>5.4.5.4 Heat Generation 87</p> <p>5.4.6 Modeling Approaches for Fuel Cells 87</p> <p>5.4.6.1 Softwares 89</p> <p>5.4.7 Fuel Cell Systems and Applications 90</p> <p>5.4.7.1 Portable Power 90</p> <p>5.4.7.2 Backup Power 91</p> <p>5.4.7.3 Transportation 91</p> <p>5.4.7.4 Stationary Power 92</p> <p>5.4.7.5 Maritime Applications 93</p> <p>5.4.7.6 Aerospace Applications 94</p> <p>5.4.7.7 Aircraft Applications 95</p> <p>5.4.8 Bottlenecks for Fuel Cells 95</p> <p>5.5 Conclusions 97</p> <p>Acknowledgments 97</p> <p>Nomenclature 97</p> <p>Abbreviations 98</p> <p>References 99</p> <p><b>6 Decarbonizing with Nuclear Power, Current Builds, and Future Trends 103<br /> </b><i>Hasliza Omar, Geordie Graetz, and Mark Ho</i></p> <p>6.1 Introduction 103</p> <p>6.2 The Historic Cost of Nuclear Power 104</p> <p>6.3 The Small Modular Reactor (SMR): Could Smaller Be Better? 109</p> <p>6.3.1 New Nuclear Reactor in Town 109</p> <p>6.3.2 Is It the Smaller the Better? 110</p> <p>6.4 Evaluating the Economic Competitiveness of SMRs 113</p> <p>6.4.1 Size Matters 113</p> <p>6.4.2 Construction Time 113</p> <p>6.4.3 Co-siting Economies 114</p> <p>6.4.4 Learning Rates 115</p> <p>6.4.5 The Levelized Cost of Electricity (LCOE): Is It a Reliable Measure? 118</p> <p>6.4.6 The Overnight Capital Cost (OCC): SMRs vs. a Large Reactor 120</p> <p>6.5 Nuclear Energy: Looking Beyond Its Perceived Reputation 123</p> <p>6.5.1 Load-Following and Cogeneration 123</p> <p>6.5.2 Industrial Heat (District and Process) 125</p> <p>6.5.3 Hydrogen Production 127</p> <p>6.5.4 Seawater Desalination 130</p> <p>6.6 Western Nuclear Industry Trends 131</p> <p>6.6.1 The United States 131</p> <p>6.6.2 The United Kingdom 132</p> <p>6.6.3 Canada 135</p> <p>6.7 Conclusions 137</p> <p>References 141</p> <p><b>7 Decarbonization of the Fossil Fuel Sector 153<br /> </b><i>Tian Goh and Beng Wah Ang</i></p> <p>7.1 Introduction 153</p> <p>7.2 Technologies for the Decarbonization of the Fossil Fuel Sector 154</p> <p>7.2.1 Historical Developments 154</p> <p>7.2.2 Hydrogen Economy 155</p> <p>7.2.3 Carbon Capture and Storage 156</p> <p>7.3 Recent Advancements and Potential 157</p> <p>7.3.1 Carbon Capture and Storage 158</p> <p>7.3.2 Carbon Capture and Utilization 158</p> <p>7.4 Future Emission Scenarios and Challenges to Decarbonization 160</p> <p>7.4.1 Application in Future Emission Scenarios 160</p> <p>7.4.2 Challenges to Decarbonization 164</p> <p>7.5 Controversies and Debates 167</p> <p>7.5.1 Opposing Narratives 167</p> <p>7.5.2 Public Perceptions 169</p> <p>7.6 Conclusions 171</p> <p>References 172</p> <p><b>8 Electric Vehicle Adoption Dynamics on the Road to Deep Decarbonization 177<br /> </b><i>Emil Dimanchev, Davood Qorbani, and Magnus Korpås</i></p> <p>8.1 Introduction 177</p> <p>8.2 Current State of Electric Vehicles 178</p> <p>8.2.1 Electric Vehicle Technology 178</p> <p>8.2.2 Electric Vehicle Environmental Attributes 179</p> <p>8.2.3 Competing Low-Carbon Vehicle Technologies 180</p> <p>8.3 Contribution of Road Transport to Decarbonization Policy 181</p> <p>8.3.1 State and Trends of CO2 Emissions from Transportation and Passenger Vehicles 181</p> <p>8.3.2 Decarbonization of Transport 182</p> <p>8.3.3 Decarbonization Pathways for Passenger Vehicles and the Role of Electric Vehicles 183</p> <p>8.4 Dynamics of Vehicle Fleet Turnover 190</p> <p>8.4.1 Illustrative Fleet Turnover Model 190</p> <p>8.4.2 Implications of Fleet Turnover Dynamics for Meeting Decarbonization Targets 191</p> <p>8.5 Electric Vehicle Policy 194</p> <p>8.5.1 Case Study of Electric Vehicle Policy in Norway 195</p> <p>8.6 Prospects for Electric Vehicle Technology and Economics 196</p> <p>8.7 Conclusions 199</p> <p>References 200</p> <p><b>9 Integrated Energy System: A Low-Carbon Future Enabler 207<br /> </b><i>Pengfei Zhao, Chenghong Gu, Zhidong Cao, and Shuangqi Li</i></p> <p>9.1 Paradigm Shift in Energy Systems 207</p> <p>9.2 Key Technologies in Integrated Energy Systems 210</p> <p>9.2.1 Conversion Technologies 211</p> <p>9.2.1.1 Combined Heat and Power 211</p> <p>9.2.1.2 Heat Pump and Gas Furnace 211</p> <p>9.2.1.3 Power to Gas 211</p> <p>9.2.1.4 Gas Storage 212</p> <p>9.2.1.5 Battery Energy Storage Systems 212</p> <p>9.2.2 Energy Hub Systems 213</p> <p>9.2.3 Modeling of Integrated Energy Systems 214</p> <p>9.3 Management of Integrated Energy Systems 215</p> <p>9.3.1 Optimization Techniques for Integrated Energy Systems 215</p> <p>9.3.1.1 Stochastic Optimization 215</p> <p>9.3.1.2 Robust Optimization 215</p> <p>9.3.1.3 Distributionally Robust Optimization 217</p> <p>9.3.2 Supply Quality Issues 217</p> <p>9.3.2.1 Voltage Issues 217</p> <p>9.3.2.2 Gas Quality Issues 218</p> <p>9.4 Volt–Pressure Optimization for Integrated Energy Systems 219</p> <p>9.4.1 Research Gap 219</p> <p>9.4.2 Problem Formulation 220</p> <p>9.4.2.1 Day-Ahead Constraints of VPO 220</p> <p>9.4.2.2 Real-Time Constraints of VPO 222</p> <p>9.4.2.3 Objective Function of Two-Stage VPO 222</p> <p>9.4.3 Results and Discussions 223</p> <p>9.4.3.1 Studies on VVO 223</p> <p>9.4.3.2 Studies on Economic Performance 227</p> <p>9.4.3.3 Studies on Gas Quality Management 228</p> <p>9.5 Conclusions 229</p> <p>A Appendix: Nomenclature 230</p> <p>A.1 Indices and Sets 230</p> <p>A.2 Parameters 230</p> <p>A.3 Variables and Functions 232</p> <p>References 233</p> <p><b>Part II Decreasing Use 239</b></p> <p><b>10 Decreasing the Use of Energy for Sustainable Energy Transition 241<br /> </b><i>Muhammad Asif</i></p> <p>10.1 Why Decrease the Use of Energy? 241</p> <p>10.2 Energy Efficiency Approaches 243</p> <p>10.2.1 Change of Attitude 243</p> <p>10.2.2 Performance Enhancement 244</p> <p>10.2.3 New Technologies 244</p> <p>10.3 Scope of Energy Efficiency 244</p> <p>References 245</p> <p><b>11 Energy Conservation and Management in Buildings 247<br /> </b><i>Wahhaj Ahmed and Muhammad Asif</i></p> <p>11.1 Energy and Environmental Footprint of Buildings 247</p> <p>11.2 Energy-Efficiency Potential in Buildings 248</p> <p>11.3 Energy-Efficient Design Strategies 250</p> <p>11.3.1 Passive and Active Design Strategies 251</p> <p>11.3.2 Energy Modeling to Design Energy-Efficient Strategies 251</p> <p>11.4 Building Energy Retrofit 255</p> <p>11.4.1 Building Energy-Retrofit Classifications 256</p> <p>11.4.1.1 Pre- and Post-Retrofit Assessment Strategies 256</p> <p>11.4.1.2 Number and Type of EEMs 257</p> <p>11.4.1.3 Modeling and Design Approach 258</p> <p>11.5 Sustainable Building Standards and Certification Systems 260</p> <p>11.6 Conclusions 261</p> <p>References 261</p> <p><b>12 Methodologies for the Analysis of Energy Consumption in the Industrial Sector 267<br /> </b><i>Vincenzo Bianco</i></p> <p>12.1 Introduction 267</p> <p>12.2 Overview of Basic Indexes for Energy Consumption Analysis 269</p> <p>12.2.1 Compound Annual Growth Rate (CAGR) 269</p> <p>12.2.2 Energy Consumption Elasticity (ECE) 270</p> <p>12.2.3 Energy Intensity (EI) 270</p> <p>12.2.4 Linear Correlation Index (LCI) 271</p> <p>12.2.5 Weather Adjusting Coefficient (WAC) 271</p> <p>12.3 Decomposition Analysis of Energy Consumption 272</p> <p>12.4 Case Study: The Italian Industrial Sector 274</p> <p>12.4.1 Index-Based Analysis 274</p> <p>12.4.2 Decomposition of Energy Consumption 276</p> <p>12.5 Relationship Between Energy Efficiency and Energy Transition 283</p> <p>12.6 Conclusions 284</p> <p>References 285</p> <p><b>Part III Decentralization 287</b></p> <p><b>13 Decentralization in Energy Sector 289<br /> </b><i>Muhammad Asif</i></p> <p>13.1 Introduction 289</p> <p>13.2 Overview of Decentralized Generation Systems 290</p> <p>13.2.1 Classification 290</p> <p>13.2.2 Technologies 292</p> <p>13.3 Decentralized and Centralized Generation – A Comparison 293</p> <p>13.3.1 Advantages of Decentralized Generation 293</p> <p>13.3.1.1 Cost-Effectiveness 293</p> <p>13.3.1.2 Enhanced Energy Access 293</p> <p>13.3.1.3 Environment Friendliness 294</p> <p>13.3.1.4 Security 294</p> <p>13.3.1.5 Reliability 294</p> <p>13.3.1.6 Peak Shaving 294</p> <p>13.3.1.7 Supply Resilience 294</p> <p>13.3.1.8 New Business Streams 294</p> <p>13.3.1.9 Other Benefits 295</p> <p>13.3.2 Disadvantages of Decentralized Generation 295</p> <p>13.3.2.1 Power Quality 295</p> <p>13.3.2.2 Effect on Gird Stability 295</p> <p>13.3.2.3 Energy Storage Requirement 295</p> <p>13.3.2.4 Institutional Resistance 295</p> <p>13.4 Developments and Trends 295</p> <p>References 296</p> <p><b>14 Decentralizing the Electricity Infrastructure: What Is Economically Viable? 299<br /> </b><i>Moritz Vogel, Marion Wingenbach, and Dierk Bauknecht</i></p> <p>14.1 Introduction 299</p> <p>14.2 Decentralization of Electricity Systems 300</p> <p>14.3 Technological Dimensions of Decentralization 301</p> <p>14.3.1 Grid Level of Power Plants 302</p> <p>14.3.2 Regional Distribution of Power Plants 302</p> <p>14.3.3 Grid Level of Flexibility Options 302</p> <p>14.3.4 Level of Optimization 303</p> <p>14.4 Decentralization: Costs and Benefits 303</p> <p>14.4.1 Grid Level of Power Plants 304</p> <p>14.4.2 Regional Distribution of Power Plants 305</p> <p>14.4.3 Grid Level of Flexibility Options 306</p> <p>14.4.4 Level of Optimization 307</p> <p>14.5 Germany’s Decentralization Experience: A Case Study 310</p> <p>14.5.1 System Cost 310</p> <p>14.5.2 Grid Expansion 314</p> <p>14.5.3 Key Findings 316</p> <p>14.6 How Far Should Decentralization Go? 317</p> <p>14.6.1 Grid Level of Power Plants 317</p> <p>14.6.2 Regional Distribution of Power Plants 317</p> <p>14.6.3 Grid Level of Flexibility Options 319</p> <p>14.6.4 Level of Optimization 319</p> <p>14.7 Conclusions 320</p> <p>References 320</p> <p><b>15 Governing Decentralized Electricity: Taking a Participatory Turn 325<br /> </b><i>Marie Claire Brisbois</i></p> <p>15.1 Introduction 325</p> <p>15.2 How Is Decentralization Affecting Traditional Modes of Electricity Governance? 326</p> <p>15.2.1 Sticking Points for Shifting to Decentralized Governance 327</p> <p>15.3 What Kinds of Governance Does Decentralization Require? 328</p> <p>15.3.1 Security 328</p> <p>15.3.2 Affordability 329</p> <p>15.3.3 Sustainability 331</p> <p>15.4 What Do We Know About Decentralized Governance from Other Spheres? 332</p> <p>15.4.1 Nested, Multilevel Governance of Common Pool Resources 333</p> <p>15.4.2 Key Components of Common Pool Resource Governance 334</p> <p>15.4.2.1 Roles and Responsibilities 334</p> <p>15.4.2.2 Policy Coherence 335</p> <p>15.4.2.3 Capacity Development 336</p> <p>15.4.2.4 Transparent and Open Data 336</p> <p>15.4.2.5 Appropriate Regulations 337</p> <p>15.4.2.6 Stakeholder Participation 338</p> <p>15.5 Moving Toward a Decentralized Governance System 339</p> <p>15.5.1 Phase One 339</p> <p>15.5.2 Phase Two 340</p> <p>15.5.3 Phase Three 341</p> <p>15.6 Conclusions 341</p> <p>References 342</p> <p><b>Part IV Digitalization 347</b></p> <p><b>16 Digitalization in Energy Sector 349<br /> </b><i>Muhammad Asif</i></p> <p>16.1 Introduction 349</p> <p>16.2 Overview of Digital Technologies 350</p> <p>16.2.1 Artificial Intelligence and Machine Learning 350</p> <p>16.2.2 Blockchain 351</p> <p>16.2.3 Robotics and Automated Technologies 351</p> <p>16.2.4 Internet of Things 351</p> <p>16.2.5 Big Data and Data Analytics 352</p> <p>16.3 Digitalization: Prospects and Challenges 352</p> <p>References 354</p> <p><b>17 Smart Grids and Smart Metering 357<br /> </b><i>Haroon Farooq, Waqas Ali, and Intisar A. Sajjad</i></p> <p>17.1 Introduction 357</p> <p>17.2 Grid Modernization and Its Need in the Twenty-First Century 358</p> <p>17.3 Smart Grid 360</p> <p>17.4 Smart Grid vs. Traditional Grid 362</p> <p>17.5 Smart Grid Composition and Architecture 362</p> <p>17.6 Smart Grid Technologies 365</p> <p>17.7 Smart Metering 367</p> <p>17.8 Role of Smart Metering in Smart Grid 369</p> <p>17.9 Key Challenges and the Future of Smart Grid 370</p> <p>17.10 Implementation Benefits and Positive Impacts 372</p> <p>17.11 Worldwide Development and Deployment 373</p> <p>17.12 Conclusions 375</p> <p>References 376</p> <p><b>18 Blockchain in Energy 381<br /> </b><i>Bernd Teufel and Anton Sentic</i></p> <p>18.1 Transformation of the Electricity Market and an Emerging Technology 381</p> <p>18.2 Blockchain in the Energy Sector 382</p> <p>18.2.1 Defining Blockchain 383</p> <p>18.2.2 Utilizing Blockchain in Energy Systems 385</p> <p>18.2.3 Case Examples for Blockchain Energy 386</p> <p>18.2.4 Utilization of Blockchain Energy: Introducing an Innovation Perspective 387</p> <p>18.3 Blockchain as a (Disruptive) Innovation in Energy Transitions 389</p> <p>18.3.1 Transition Studies, Regimes, and Niche Innovations 389</p> <p>18.3.2 Blockchain Technologies Between Niche Innovation and the Socio-Technical System 390</p> <p>18.4 Conclusions and Venues for Further Inquiry 392</p> <p>Acknowledgment 394</p> <p>References 394</p> <p><b>Epilogue 399<br /> </b><i>Fereidoon Sioshansi</i></p> <p>Index 405</p>
<p><b><i>Dr Muhammad Asif</i></b> is a Professor at the King Fahd University of Petroleum and Minerals. He is Charted Engineer, Certified Energy Manager, and Member of the Energy Institute. He has 20 years of teaching and research experience. His research interests include renewable energy, energy policy, energy security, sustainable buildings, and life cycle assessment. He has authored/edited six books and has published over 100 journal and conference papers.</p>
<p><b>Enables readers to understand technology-driven approaches that address the challenges of today’s energy scenario and the shift towards sustainable energy transition </b></p> <p>This book provides a comprehensive account of the characteristics of energy transition, covering the latest advancements, trends, and practices around the topic. It charts the path to global energy sustainability based on existing technology by focusing on the four dynamic approaches of decarbonization, decreasing use, decentralization, and digitalization, plus the important technical, economic, social and policy perspectives surrounding those approaches. <p>Each technology is demonstrated with an introduction and a set of specific chapters. The work appropriately incorporates up-to-date data, case studies, and comparative assessments to further aid in reader comprehension. Sample topics discussed within the work by key thinkers and researchers in the broader fields of energy include: <ul><li>Renewable energy and sustainable energy future</li> <li>Decarbonization in energy sector </li> <li>Hydrogen and fuel cells </li> <li>Electric mobility and sustainable transportation </li> <li>Energy conservation and management</li> <li>Distributed and off-grid generation, energy storage, and batteries </li> <li>Digitalization in energy sector; smart meters, smart grids, blockchain</li></ul> <p> This book is an ideal professional resource for engineers, academics, and policy makers working in areas related to the development of energy solutions.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €