Details

Spectroscopic Techniques for Polymer Characterization


Spectroscopic Techniques for Polymer Characterization

Methods, Instrumentation, Applications
1. Aufl.

von: Yukihiro Ozaki, Harumi Sato

153,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 20.10.2021
ISBN/EAN: 9783527830305
Sprache: englisch
Anzahl Seiten: 496

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization</b> <p>In<i> Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications,</i> a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy.</p> <p>Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy.</p> <p><i>Spectroscopic Techniques for Polymer Characterization</i> contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers:</p> <ul> <li>A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy</li> <li>Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers</li> <li>Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy</li> <li>In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers</li> </ul> <p><i>Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications</i> is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.</p>
<p>List of Contributors xiii</p> <p>Preface xvii</p> <p>General Introduction xix</p> <p><b>Part I Recent Progress on Spectroscopic Techniques </b><b>1</b></p> <p><b>1 Polymer Spectroscopy – Spectroscopy from the Far-Ultraviolet to Far-Infrared/Terahertz and Raman Spectroscopy </b><b>3<br /> </b><i>Yukihiro Ozaki and Harumi Sato</i></p> <p>1.1 Introduction to Polymer Spectroscopy 3</p> <p>1.1.1 Outline of Polymer Spectroscopy 3</p> <p>1.1.2 Brief History of Polymer Spectroscopy 5</p> <p>1.2 Overview of Molecular Spectroscopy from the Far-Ultraviolet to Far-Infrared/Terahertz and Raman Spectroscopy in Polymer Research 6</p> <p>1.2.1 IR and Raman Spectroscopy Analyses 6</p> <p>1.2.2 FIR/Terahertz and Low-Frequency Raman Spectroscopy 8</p> <p>1.2.3 Near-Infrared (NIR) Spectroscopy 8</p> <p>1.2.4 SERS and TERS Spectroscopy 9</p> <p>1.2.5 FUV Spectroscopy 9</p> <p>1.3 Specific Examples of Molecular Spectroscopy Studies of Polymers 10</p> <p>1.3.1 Infrared, Raman, and NIR Spectroscopic Evidence for the Coexistence of Hydrogen Bond Types in Poly(Acrylic Acid) 10</p> <p>1.3.2 Low-Frequency Vibrational Modes of Nylon-6 Studied by Using IR and Raman Spectroscopies and Density Functional Theory Calculations 16</p> <p>1.3.3 NIR Spectra of Linear Low-Density Polyethylene and Their Chemometrics Analysis 21</p> <p>1.3.4 Study of the Crystallization Behavior of Asymmetric PLLA/PDLA Blend by IR and Raman Spectroscopy and Raman Imaging 23</p> <p>1.3.5 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles 28</p> <p>1.3.6 Tip-Enhanced Raman Scattering Spectroscopy Study of Local Interactions at the Interface of Styrene–Butadiene Rubber/Multiwalled Carbon Nanotube Nanocomposites 34</p> <p>1.4 Perspectives for Polymer Spectroscopy 39</p> <p>References 41</p> <p><b>2 FTIR Spectroscopy and Spectroscopic Imaging for the Analysis of Polymers and Multicomponent Polymer Systems </b><b>45<br /> </b><i>Huiqiang Lu, Andrew V. Ewing, and Sergei G. Kazarian</i></p> <p>2.1 Investigation of Polymers Using FTIR Spectroscopy and Spectroscopic Imaging 45</p> <p>2.1.1 Investigation of Miscibility in Polymer Blends 46</p> <p>2.1.2 Investigation of Intermolecular Interactions 47</p> <p>2.1.2.1 Investigation of Partially Miscible PMMA–PEG Blends Using Two-Dimensional Disrelation Mapping 48</p> <p>2.1.3 Investigation of Crystallization in Polymers 51</p> <p>2.1.3.1 Investigation of Solvent-Induced Crystallization in Polymers 51</p> <p>2.1.3.2 Investigation of the Crystallization Process of PHB, PLLA, and Their Blends 53</p> <p>2.2 Investigation of Polymers Subjected to High-Pressure or Supercritical CO<sub>2</sub> Using FTIR Spectroscopy and FTIR Spectroscopic Imaging 55</p> <p>2.2.1 Morphology of Polymeric Materials under High-Pressure or Supercritical CO<sub>2</sub> 56</p> <p>2.2.2 Investigation of Interaction in Polymers under High-Pressure or Supercritical CO<sub>2</sub> 59</p> <p>2.2.2.1 Investigation of the Effect of High-Pressure CO<sub>2</sub> on the H-Bonding in PEG–PVP Blends 60</p> <p>2.2.2.2 Investigation of the Mechanism of Interaction between CO<sub>2</sub> and Polymers through the Thermodynamic Parameters Produced from In Situ ATR–FTIR Spectroscopy 61</p> <p>2.2.3 Investigation of Crystallization in Polymers under High-Pressure or Supercritical CO<sub>2</sub> 61</p> <p>2.2.4 The Investigation of Structural Changes and Crystallization Kinetics of Polymers Exposed to High-Pressure CO<sub>2</sub> through In Situ High-Pressure FTIR and FT-Raman Spectroscopy 64</p> <p>2.2.5 Investigation of Swelling and CO<sub>2</sub> Sorption into the Polymers under High-Pressure or Supercritical CO<sub>2</sub> 65</p> <p>2.3 Conclusion 67</p> <p>References 68</p> <p><b>3 Interfaces in Polymer Nanocomposites Characterized by Spectroscopic Techniques </b><b>75<br /> </b><i>Liliane Bokobza</i></p> <p>3.1 Introduction 75</p> <p>3.2 Types of Interactions at the Interface 76</p> <p>3.3 Characterization of the Interfaces 80</p> <p>3.3.1 Fluorescence Spectroscopy 82</p> <p>3.3.2 Solid-State NMR Spectroscopy 85</p> <p>3.3.3 Vibrational Spectroscopy 88</p> <p>3.3.3.1 Infrared Spectroscopy 89</p> <p>3.3.3.2 Raman Spectroscopy 91</p> <p>3.4 Conclusions 95</p> <p>References 96</p> <p><b>4 Far-Infrared/Terahertz and Low-Frequency Raman Spectroscopies in Polymers </b><b>107<br /> </b><i>Harumi Sato</i></p> <p>4.1 Introduction 107</p> <p>4.2 Intermolecular Hydrogen Bonds in the Low-Frequency Region of PHB by QCCs 108</p> <p>4.3 Several Types of Intermolecular Hydrogen Bonds in PCL 109</p> <p>4.4 Stress-Induced Crystal Transition of Polybutylene Succinate (PBS) 113</p> <p>4.5 The Differences in Intermolecular Hydrogen Bonding Between PET and PBT 115</p> <p>4.6 THz Imaging of Polymer Film 117</p> <p>4.7 Conclusions 120</p> <p>References 120</p> <p><b>5 Near-Infrared Spectroscopy and Imaging of Polymers </b><b>125<br /> </b><i>Daitaro Ishikawa, Yuta Hikima, and Yukihiro Ozaki</i></p> <p>5.1 Introduction to NIR Spectroscopy 125</p> <p>5.1.1 Principles of NIR Spectroscopy 125</p> <p>5.1.2 Characteristics and Advantages of NIR Spectroscopy 126</p> <p>5.1.3 Analysis of NIR Spectra 126</p> <p>5.2 Applications to Polymer Science and Engineering of NIR Spectroscopy 128</p> <p>5.2.1 Polarized NIR Spectroscopy Studies of Molecular Orientation of Polymers 128</p> <p>5.2.2 Isothermal Crystallization Kinetics of Poly(3-hydroxybutyrate) 134</p> <p>5.2.3 Crystallization of Poly(3-hydroxybutyrate-<i>co</i>-3-hydroxyhexanoate) During Melt Extrusion Promoted by Residual Crystals 140</p> <p>5.2.3.1 Outline of Online NIR Analysis and Online NIR Monitoring of the Residual Crystal Amount at the Extruder Outlet Nozzle 140</p> <p>5.2.3.2 Amount of Residual Crystals at the Extruder Outlet 141</p> <p>5.2.3.3 Crystallization of Extruded Strands 145</p> <p>5.2.3.4 Analysis of Extruded Strand Crystallization Using the Avrami Equation 146</p> <p>5.3 NIR Imaging for Polymer Sciences 148</p> <p>5.3.1 Introduction 148</p> <p>5.3.2 Theory of NIR Imaging 148</p> <p>5.3.2.1 Acquisition of Hypercube 148</p> <p>5.3.2.2 Data Transfer and Mapping 149</p> <p>5.3.2.3 Feature of NIR Imaging Devices 150</p> <p>5.3.3 Applications of NIR Imaging 151</p> <p>5.3.3.1 Monitoring of Crystal Evolution Combined with Chemometrics 151</p> <p>5.3.3.2 Quality Evaluation Potential for Wide Area 153</p> <p>5.3.3.3 Diffusion Process Monitoring 153</p> <p>5.3.3.4 Degradable Process Monitoring of Biodegradable Polymer 154</p> <p>5.3.3.5 Rapid Evaluation of the Water Content in PLA Pellets 156</p> <p>5.3.3.6 Nondestructive Detection of Degraded Polylactic Acid Moldings 157</p> <p>References 160</p> <p><b>6 Far Ultraviolet Spectroscopy for Polymers </b><b>165<br /> </b><i>Yusuke Morisawa and Nami Ueno</i></p> <p>6.1 Introduction 165</p> <p>6.2 Measurement of ATR–FUV Spectra of Polymer 166</p> <p>6.3 ATR–FUV Spectra of Nylons 167</p> <p>6.4 ATR–FUV Spectra of Poly(3-hydroxybutyrate) (PHB) and Its Graphene Nanocomposites 172</p> <p>6.5 ATR–FUV Study of Poly(ethylene glycol) (PEG) and Its Complex with Lithium Ion (Li<sup>+</sup>) 176</p> <p>6.6 Summary 181</p> <p>References 181</p> <p><b>7 Synchrotron-Based UV Resonance Raman Spectroscopy for Polymer Characterization </b><b>183<br /> </b><i>Barbara Rossi, Mariagrazia Tortora, Sara Catalini, Alessandro Gessini, and Claudio Masciovecchio</i></p> <p>7.1 Basic Principles of Raman and UV Resonance Raman Spectroscopy 183</p> <p>7.1.1 Molecular Vibrations and Raman Effect 183</p> <p>7.1.2 Resonance Raman (RR) Scattering 191</p> <p>7.1.3 Fundamental Applications of UV Resonance Raman Spectroscopy 193</p> <p>7.2 Synchrotron-Based UV Resonance Raman: Basic Principles and Instrumentation 193</p> <p>7.2.1 Synchrotron-Based UVRR Setup on IUVS@Elettra 194</p> <p>7.3 SR-UVRR Characterization of Biopolymers 197</p> <p>7.4 UV Resonance Raman Studies on Polymeric Hydrogels 203</p> <p>7.4.1 Water Confinement in Polysaccharide Hydrogels 204</p> <p>7.4.2 Phase Transition in Thermo-Sensitive Polysaccharide Hydrogels 208</p> <p>7.4.3 Water and Polymer Dynamics in pH-Responsive Polysaccharide Hydrogels 212</p> <p>7.5 Conclusions 215</p> <p>Acknowledgment 217</p> <p>References 217</p> <p><b>8 Sum Frequency Generation Spectroscopy for Understanding the Polymer Dynamics at Buried Interfaces </b><b>227<br /> </b><i>Daisuke Kawaguchi and Keiji Tanaka</i></p> <p>8.1 Introduction 227</p> <p>8.2 Principle 228</p> <p>8.3 Examples 230</p> <p>8.3.1 Nonsolvent Interface 230</p> <p>8.3.1.1 Polystyrene 230</p> <p>8.3.2 Solid Interface 238</p> <p>8.3.2.1 Polystyrene 238</p> <p>8.3.2.2 Polyisoprene 240</p> <p>8.3.2.3 Poly(styrene-<i>co</i>-butadiene) Rubber [89] 244</p> <p>8.4 Conclusions 250</p> <p>Acknowledgements 251</p> <p>References 251</p> <p><b>9 Application of Two-Dimensional Correlation Spectroscopy (2D-COS) in Polymer Studies </b><b>259<br /> </b><i>Yeonju Park, Isao Noda, and Young Mee Jung</i></p> <p>9.1 Introduction 259</p> <p>9.2 Theory 260</p> <p>9.2.1 Background 260</p> <p>9.2.2 Properties of 2D-COS 260</p> <p>9.3 Applications of 2D-COS in Polymer Studies 261</p> <p>9.3.1 Applications of Conventional 2D-COS 261</p> <p>9.3.1.1 Biodegradable Polymers 261</p> <p>9.3.1.2 Thermo-Responsive Polymers 262</p> <p>9.3.2 2D Hetero-Spectral Correlation Analysis 267</p> <p>9.3.3 Two-Dimensional (2D) Gradient-Mapping Method 269</p> <p>9.3.4 Chemometric Techniques Combined with 2D-COS 270</p> <p>9.3.5 Smooth Factor Analysis 272</p> <p>9.3.6 Projection 2D-COS 275</p> <p>9.3.7 2D-COS for Hyperspectral Imaging 278</p> <p>9.4 Conclusions 284</p> <p>References 284</p> <p><b>10 Molecular Dynamics in Polymer Science </b><b>297<br /> </b><i>Mateusz Z. Brela, Marek Boczar, and Marek J. Wójcik</i></p> <p>10.1 Introduction 297</p> <p>10.2 Historical and Theoretical Background 299</p> <p>10.3 Applications 302</p> <p>10.3.1 Vibrational Spectra of Hydrogen-Bonded Polymers 303</p> <p>10.3.2 Studies of Interactions between Polymers and Water 304</p> <p>10.3.3 Mechanical Properties of Polymers 306</p> <p>10.3.4 Interphase Interactions 307</p> <p>10.4 Summary and Perspectives 309</p> <p>Acknowledgment 311</p> <p>References 311</p> <p><b>11 Spectroscopic Analysis of Structural Transformations Associated with Poly(lactic acid) </b><b>317<br /> </b><i>Shaw L. Hsu and Xiaozhen Yang</i></p> <p>11.1 Introduction 317</p> <p>11.2 Spectroscopic Tools 319</p> <p>11.2.1 Vibrational Features of PLA Crystals 321</p> <p>11.2.2 Analysis of Disordered PLA Chains 323</p> <p>11.2.3 Description of Anisotropic PLA – Polarized Spectra 327</p> <p>11.3 Simulation Studies for both Ordered and Disordered Structures 329</p> <p>11.4 Analysis of Conformational Changes in PLA during Deformation 334</p> <p>11.5 Aging Behavior in PLA 338</p> <p>11.6 Conclusion 340</p> <p>Acknowledgment 340</p> <p>References 340</p> <p><b>Part II Topical Polymers Studied by Spectroscopy </b><b>345</b></p> <p><b>12 Probing Molecular Events in Self-Healable Polymers </b><b>347<br /> </b><i>Qianhui Liu, Lei Li, and Marek W. Urban</i></p> <p>12.1 Introduction 347</p> <p>12.2 Microphase Separation 349</p> <p>12.3 Entropically Driven Self-Healing 353</p> <p>12.3.1 Free Radical and Cationic Recombination 355</p> <p>12.3.2 Van der Waals Interactions 360</p> <p>12.3.3 Chemical Sensing of Damage–Repair Cycle 361</p> <p>Acknowledgments 365</p> <p>References 365</p> <p><b>13 Recent Application of Vibrational Spectroscopy to Conjugated Conducting Polymers </b><b>367<br /> </b><i>Yukio Furukawa</i></p> <p>13.1 Introduction 367</p> <p>13.2 Carriers 369</p> <p>13.3 Optical Absorption Spectra upon Chemical Doping 371</p> <p>13.3.1 P3HT 371</p> <p>13.3.2 Poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-<i>b</i>]thiophene)(PBTTT-C16) 372</p> <p>13.4 Raman Spectra of Positive Polarons and Bipolarons Generated Upon Chemical Doping 374</p> <p>13.4.1 P3HT 374</p> <p>13.4.2 PBTTT-C16 375</p> <p>13.5 Carriers and Electrical Properties Based on ILGTs 377</p> <p>13.5.1 ILGTs 377</p> <p>13.5.2 Raman Spectra of ILGTs Fabricated with P3HT 378</p> <p>13.5.3 Raman Spectra of ILGTs Fabricated with PBTTT-C16 380</p> <p>13.6 Carrier Mobilities 383</p> <p>13.7 Raman Images in the Channel Region 383</p> <p>13.8 Carrier Dynamics in Bulk Heterojunction Films 386</p> <p>13.8.1 Photoexcitation Dynamics on Femto- and Picosecond Time Scales 386</p> <p>13.8.2 Microsecond Recombination Dynamics of Long-Lived Carriers 387</p> <p>13.9 Conclusions 388</p> <p>References 388</p> <p><b>14 Vibrational Spectroscopy for Fluoropolymers and Oligomers </b><b>393<br /> </b><i>Takeshi Hasegawa</i></p> <p>14.1 Perfluoroalkyl-Containing Compounds 393</p> <p>14.1.1 Molecular Conformation on Phase Diagram 393</p> <p>14.1.2 Molecular Vibration of an R<sub>f </sub>Group 396</p> <p>14.1.3 The SDA theory 400</p> <p>14.2 Spectroscopy for R<sub>f</sub> Compounds 402</p> <p>14.2.1 ROA analysis of R<sub>f</sub> Compounds 402</p> <p>14.2.2 Surface Modes of Phonon and Polariton 405</p> <p>14.2.3 Summary and Perspective 408</p> <p>References 409</p> <p><b>15 Probing Structures of Conductive Polymers with Vibrational Spectroscopy </b><b>413<br /> </b><i>Jianming Zhang and Yuan Yuan</i></p> <p>15.1 Introduction 413</p> <p>15.2 Application of Vibrational Spectroscopy 413</p> <p>15.2.1 Chain Packing/Aggregate Mode Identification 413</p> <p>15.2.2 Conformation-Sensitive Bands Identification 414</p> <p>15.2.3 Doping-Sensitive Bands Identification 415</p> <p>15.2.4 Thermally Induced Phase Transitions 417</p> <p>15.2.5 Structural Dynamics 418</p> <p>15.2.6 Chemical Composition/Morphology Analysis in Conductive-Polymer-Based Blends 420</p> <p>15.2.7 Surface/Interface Molecular Orientation 423</p> <p>15.2.8 Structure and Dynamics of Charge Carriers 425</p> <p>15.2.9 Electric-Field-Induced Structural Changes 429</p> <p>15.3 Conclusion 431</p> <p>References 431</p> <p><b>16 Weak Hydrogen Bonding in Biodegradable Polymers </b><b>435<br /> </b><i>Harumi Sato</i></p> <p>16.1 Introduction 435</p> <p>16.2 Weak Hydrogen Bonding in Poly(3-hydroxybutyrate) 436</p> <p>16.3 Comparison between Weak and Strong Hydrogen Bonds 438</p> <p>16.4 Difference in the Side Chain Length; PHB and PHV 439</p> <p>16.5 Polyhydroxyalkanoate Copolymers 442</p> <p>16.6 Crystallization Process of PHB 443</p> <p>16.7 Other Kinds of CH⋅⋅⋅O Hydrogen Bonding 443</p> <p>16.8 Conclusions 447</p> <p>References 449</p> <p>Index 453</p>
<p><b>Yukihiro Ozaki</b> obtained his Ph.D. in chemistry in 1978 from Osaka University. Since 1993 he was a professor in the Department of Chemistry, School of Science and Technology until the end of March, 2018. Currently, Ozaki is a professor emeritus of Kwansei Gakuin University. Ozaki's research programs have been concerned with basic studies and applications of far-ultraviolet (FUV), near-infrared (NIR), and far-infrared (FIR)/Terahertz, and Raman spectroscopy. His spectroscopy research covers from basic studies of spectroscopy such as a theory of plasmon-enhanced Raman scattering, the development of new types of instruments like a surface plasmon resonance-NIR spectrometer to applications involving those to polymers, nano materials, and biological samples. Ozaki received several awards including Bomem-Michelson Award (2014), Chemical Society of Japan Award (2017), The Medal with Purple Ribbon from Japanese Emperor (2018), and Pittsburgh Spectroscopy Award (2019).</p> <p><b>Harumi Sato</b> obtained her Ph.D. from Gunma University in 1996. She was a postdoctoral fellow in the Department of Chemistry, School of Science and Technology, Kwansei Gakuin University during 1999-2012. In 2012, she joined Kobe University as an associate professor of Graduate School of Human Development and Environment of Kobe University. She is currently a full professor of Kobe University since 2018. Her research interest lies in understanding the polymer structure, physical properties, and intermolecular interactions by infrared (IR) spectroscopy, Raman spectroscopy, and terahertz spectroscopy (THz). Her current work focuses on weak hydrogen bonds of biodegradable polymers. She received several awards for her contributions in polymer science and polymer spectroscopy: Award for Encouragement of Research in Polymer Science from the Society of Polymer Science of Japan (2003), Masao Horiba Award (2005).</p>
|<P><B>An insightful exploration of cutting-edge spectroscopic techniques in polymer characterization</B></P> <P>In<I> Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications,</I> a team of distinguished chemists delivers a comprehensive exploration of the vast potential of spectroscopic characterization techniques in polymer research. The book offers a concise outline of the principles, advantages, instrumentation, experimental techniques, and noteworthy applications of cutting-edge spectroscopy. <P>Covering a wide range of polymers, from nylon to complex polymeric nanocomposites, the author presents recent developments in polymer science to polymer, analytical, and material chemists, assisting them in keeping track of the progress in modern spectroscopy. <P><I>Spectroscopic Techniques for Polymer Characterization</I> contains contributions from pioneers in modern spectroscopic techniques from around the world. The included materials bridge the gap between spectroscopists, polymer scientists, and engineers in academia and industry. The book also offers: <UL><LI> A thorough introduction to the progress in spectroscopic techniques, including polymer spectroscopy and near-infrared spectroscopy</LI> <LI> Comprehensive explorations of topical polymers studied by spectroscopy, including polymer thin films, fluoropolymers, polymer solutions, conductive polymers</LI> <LI> Practical discussions of infrared imaging, near-infrared imaging, two-dimensional correlation spectroscopy, and far-ultraviolet spectroscopy</LI> <LI>In-depth examinations of spectroscopic studies of weak hydrogen bonding in polymers</LI></UL> <P><I>Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications</I> is a must-read reference for polymer, analytical, and physical chemists, as well as materials scientists and spectroscopists seeking a one-stop resource for polymer characterization using spectroscopic analyses.</I>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €