Details

Homologation Reactions


Homologation Reactions

Reagents, Applications, and Mechanisms, 2 Volume Set
1. Aufl.

von: Vittorio Pace

340,99 €

Verlag: Wiley-VCH (D)
Format: EPUB
Veröffentl.: 24.05.2023
ISBN/EAN: 9783527830213
Sprache: englisch
Anzahl Seiten: 960

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides a unique summary of homologation strategies in organic synthesis</b> <p><i>Homologation Reactions</i> presents different concepts underpinning the use of homologating reagents as well as their applications in organic synthesis. It covers in-depth discussions on the rationales governing this kind of transformations with a strong emphasis on mechanistic elements modulating critical aspects (e.g. selectivity) of the processes. In addition, this two-volume work features: <ul> <li>Metal carbenoids, ylides, and diazo reagents</li> <li>Homologating agents working under nucleophilic, electrophilic, and radical regime</li> <li>Homologations realized on boron-containing or carbon-centered linchpins</li> <li>Use of highly sensitive fluorinated homologating agents</li> <li>Progressive homologations and the concept of assembly line synthesis</li> <li>Homologation processes followed by rearrangement cascades</li> <li>Construction of cyclic motifs and ring-expansion</li> <li>Homologation reactions with carbon monoxide and carbon dioxide</li> <li>New and/or challenging directions to expect in the future</li></ul><p>Written by an international team of leaders in the field, the book is a useful guide for designing effective transformations by using homologation reactions. It is a must-read for every synthetic chemist in academia and industry!
<div>Foreword</div> <div>Preface</div> Acknowledgments<br /><br /><b><b>VOLUME 1<br /></b></b> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Foreword</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Preface</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">Acknowledgments</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;"> </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">VOLUME I</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">1 Diazo-Mediated Homologation Reactions</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">2 Lithium Carbenoids in Homologation Chemistry </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">3 Streamlining C1 Homologation Reactions Using Continuous Flow Technology: Focus on Diazomethane and Methyllithium Chemistry </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">4 Magnesium Carbenoids in Homologation Chemistry</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">5 Homologation Reactions Based on Zinc Carbenoids and Related Reagents </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">6 Homologations via Carbene-Mediated Rearrangement Reactions</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">7 Oxenoids as Homologation Partners </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">8 Sulfur Ylides as C1 Homologating Reagents </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">9 Modern Homologation Reactions of Sulfoxonium Ylides via C-H Activation </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">10 Phosphorus Reagents for Two-, Three-, and Four-Carbon Homologation of Carbonyl Compounds to Functionalized Olefins </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">11 Homologation Tactics with Diborylmethane via alpha-Boryl Carbanions </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;"> </div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">VOLUME II</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">12 Homologation of Boronic Acids and Organoboranes by Transition-Metal-Free Reactions with Diazo Compounds and N-Sulfonylhydrazones</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">13 Stereospecific Reagent-Controlled Homologation Using Carbenoids Generated by Sulfoxide-Metal Exchange</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">14 Iterative Homologation of Boronic Esters: Assembly Line Synthesis</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">15 Fluorocarbon Chain Homologation and Elongation Reactions</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">16 Homologation Reactions for the Synthesis of Fluorinated Molecules</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">17 Synthesis of Oxiranes and Aziridines from Aldehydes and Imines Using Anionic Homologation Approaches</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">18 One-Carbon Homologation and Homologation-Functionalization Reactions of Aldehydes</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">19 Ring Expansion Homologation: Synthetic Strategies and Reaction Design</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">20 Dehomologations and Ring Contraction Strategies</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">21 Direct Radical C1 Homologations</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">22 Allenation of Terminal Alkynes for Allene Synthesis</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">23 Homogeneous Carbon Monoxide Homologation</div> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 0px; width: 1px; height: 1px; overflow: hidden;">24 Homologation Reactions with Carbon Dioxide</div> <div>1 Diazo-Mediated Homologation Reactions</div> <div>2 Lithium Carbenoids in Homologation Chemistry </div> <div>3 Streamlining C1 Homologation Reactions Using Continuous Flow Technology: Focus on Diazomethane and Methyllithium Chemistry </div> <div>4 Magnesium Carbenoids in Homologation Chemistry</div> <div>5 Homologation Reactions Based on Zinc Carbenoids and Related Reagents </div> <div>6 Homologations via Carbene-Mediated Rearrangement Reactions</div> <div>7 Oxenoids as Homologation Partners </div> <div>8 Sulfur Ylides as C1 Homologating Reagents </div> <div>9 Modern Homologation Reactions of Sulfoxonium Ylides via C-H Activation </div> <div>10 Phosphorus Reagents for Two-, Three-, and Four-Carbon Homologation of Carbonyl Compounds to Functionalized Olefins </div> <div>11 Homologation Tactics with Diborylmethane via alpha-Boryl Carbanions </div> <div> </div> <div><b>VOLUME 2<br /></b>12 Homologation of Boronic Acids and Organoboranes by Transition-Metal-Free Reactions with Diazo Compounds and N-Sulfonylhydrazones</div> <div>13 Stereospecific Reagent-Controlled Homologation Using Carbenoids Generated by Sulfoxide-Metal Exchange</div> <div>14 Iterative Homologation of Boronic Esters: Assembly Line Synthesis</div> <div>15 Fluorocarbon Chain Homologation and Elongation Reactions</div> <div>16 Homologation Reactions for the Synthesis of Fluorinated Molecules</div> <div>17 Synthesis of Oxiranes and Aziridines from Aldehydes and Imines Using Anionic Homologation Approaches</div> <div>18 One-Carbon Homologation and Homologation-Functionalization Reactions of Aldehydes</div> <div>19 Ring Expansion Homologation: Synthetic Strategies and Reaction Design</div> <div>20 Dehomologations and Ring Contraction Strategies</div> <div>21 Direct Radical C1 Homologations</div> <div>22 Allenation of Terminal Alkynes for Allene Synthesis</div> <div>23 Homogeneous Carbon Monoxide Homologation</div> <div>24 Homologation Reactions with Carbon Dioxide</div>
<p><b>Vittorio Pace</b> is Full Professor of Organic Chemistry at the University of Torino, Italy, since 2020. Before, he held a tenure-track professorship in Drug Synthesis at the University of Vienna, Austria. He received his habilitation (venia docendi) in Pharmaceutical Chemistry from the University of Vienna in 2016. He has been the recipient of different awards including the Ciamician Medal of the Italian Chemical Society, La Roche-Hoffmann Prize of the European Society of Medicinal Chemistry, the Thieme Award, and the Habilitation Award of the Austrian Chemical Society. Prof. Pace is an elected member of the Royal Spanish Academy of Pharmacy. His research is focused on the design and development of new synthetic concepts with functionalized organometallic reagents with a strong focus on homologation sequences.</p>
<p><b>Provides a unique summary of homologation strategies in organic synthesis</b></p> <p><i>Homologation Reactions</i> presents different concepts underpinning the use of homologating reagents as well as their applications in organic synthesis. It covers in-depth discussions on the rationales governing this kind of transformations with a strong emphasis on mechanistic elements modulating critical aspects (e.g. selectivity) of the processes. In addition, this two-volume work features: <p><ul><li>Metal carbenoids, ylides, and diazo reagents</li> <li>Homologating agents working under nucleophilic, electrophilic, and radical regime</li> <li>Homologations realized on boron-containing or carbon-centered linchpins</li> <li>Use of highly sensitive fluorinated homologating agents</li> <li>Progressive homologations and the concept of assembly line synthesis</li> <li>Homologation processes followed by rearrangement cascades</li> <li>Construction of cyclic motifs and ring-expansion</li> <li>Homologation reactions with carbon monoxide and carbon dioxide</li> <li>New and/or challenging directions to expect in the future</li></ul> <p>Written by an international team of leaders in the field, the book is a useful guide for designing effective transformations by using homologation reactions. It is a must-read for every synthetic chemist in academia and industry!

Diese Produkte könnten Sie auch interessieren:

Protein Therapeutics
Protein Therapeutics
von: Tristan Vaughan, Jane Osbourn, Bahija Jallal, Raimund Mannhold, Gerd Folkers, Helmut Buschmann
EPUB ebook
273,99 €
Protein Therapeutics
Protein Therapeutics
von: Tristan Vaughan, Jane Osbourn, Bahija Jallal, Raimund Mannhold, Gerd Folkers, Helmut Buschmann
PDF ebook
273,99 €