Details

Cell Assembly with 3D Bioprinting


Cell Assembly with 3D Bioprinting


1. Aufl.

von: Yong He, Qing Gao, Yifei Jin

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 15.11.2021
ISBN/EAN: 9783527828579
Sprache: englisch
Anzahl Seiten: 368

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Provides an up-to-date outline of cell assembly methods and applications of 3D bioprinting</b></p> <p><i>Cell Assembly with 3D Bioprinting</i> provides an accesible overview of the layer-by-layer manufacturing of living structures using biomaterials. Focusing on technical implemention in medical and bioengineering applications, this practical guide summarize each key aspect of the 3D bioprinting process. Contributions from a team of leading researchers describe bioink preparation, printing method selection, experimental protocols, integration with specific applications, and more. </p> <p>Detailed, highly illustrated chapters cover different bioprinting approaches and their applications, including coaxial bioprinting, digital light projection, direct ink writing, liquid support bath-assisted 3D printing, and microgel-, microfiber-, and microfluidics-based biofabrication. The book includes practical examples of 3D bioprinting, a protocol for typical 3D bioprinting, and relevant experimental data drawn from recent research.<br /><br />* Highlights the interdisciplinary nature of 3D bioprinting and its applications in biology, medicine, and pharmaceutical science <br />* Summarizes a variety of commonly used 3D bioprinting methods <br />* Describes the design and preparation of various types of bioinks  <br />* Discusses applications of 3D bioprinting such as organ development, toxicological research, clinical transplantation, and tissue repair</p> <p>Covering a wide range of topics, <i>Cell Assembly with 3D Bioprinting</i> is essential reading for advanced students, academic researchers, and industry professionals in fields including biomedicine, tissue engineering, bioengineering, drug development, pharmacology, bioglogical screening, and mechanical engineering.</p>
<p>Preface xv</p> <p><b>1 3D Bioprinting, A Powerful Tool for 3D Cells Assembling </b><b>1</b></p> <p>1.1 What Is 3D Bioprinting? 1</p> <p>1.2 Evolution of 3D Bioprinting 3</p> <p>1.3 Brief Classification of 3D Bioprinting 4</p> <p>1.4 Evaluation of Bioinks 5</p> <p>1.5 Outlook and Discussion 6</p> <p>References 8</p> <p><b>2 Representative 3D Bioprinting Approaches </b><b>11</b></p> <p>2.1 Introduction 11</p> <p>2.2 Inkjet Bioprinting 13</p> <p>2.2.1 Mechanisms of Droplet Formation 14</p> <p>2.2.1.1 Continuous-Inkjet Bioprinting 14</p> <p>2.2.1.2 Drop-on-Demand Inkjet Bioprinting 15</p> <p>2.2.1.3 Electrohydrodynamic Jet Bioprinting 16</p> <p>2.2.2 Hydrogel-Based Bioinks for Inkjet Bioprinting 17</p> <p>2.2.2.1 Material Properties for Inkjet Bioprinting Applications 18</p> <p>2.2.2.2 Commonly Used Hydrogels in Inkjet Bioprinting 19</p> <p>2.2.3 Representative Cell Printing Applications 20</p> <p>2.2.3.1 Bone and Cartilage Tissues 21</p> <p>2.2.3.2 Organoids 22</p> <p>2.2.3.3 Skin Tissues 22</p> <p>2.2.3.4 Vascular Networks 22</p> <p>2.2.4 Summary 22</p> <p>2.3 Extrusion Bioprinting 23</p> <p>2.3.1 Mechanisms of Extruding Biocompatible Materials 23</p> <p>2.3.2 Primary Extrusion Bioprinting Strategies 24</p> <p>2.3.3 Main Categories of Extrudable Biomaterials 25</p> <p>2.3.3.1 Hydrogels 25</p> <p>2.3.3.2 Micro-Carriers 26</p> <p>2.3.3.3 Cell Aggregates 27</p> <p>2.3.3.4 Decellularized Matrix Components 28</p> <p>2.3.4 Summary 28</p> <p>2.4 Light-Based Bioprinting 28</p> <p>2.4.1 Laser-Assisted Bioprinting 28</p> <p>2.4.1.1 Mechanism 28</p> <p>2.4.1.2 Materials 30</p> <p>2.4.1.3 Biomedical Applications 30</p> <p>2.4.2 Stereolithography 32</p> <p>2.4.2.1 Mechanism 32</p> <p>2.4.2.2 Materials 33</p> <p>2.4.2.3 Biomedical Applications 33</p> <p>2.4.3 Multi-Photon Polymerization 34</p> <p>2.4.3.1 Mechanism 34</p> <p>2.4.3.2 Materials 35</p> <p>2.4.3.3 Biomedical Applications 35</p> <p>2.4.4 Digital Light Projection 3D Printing 35</p> <p>2.4.4.1 Mechanism 36</p> <p>2.4.4.2 Materials 37</p> <p>2.4.4.3 Biomedical Applications 37</p> <p>2.4.5 Computed Axial Lithography 37</p> <p>2.4.5.1 Mechanism 37</p> <p>2.4.5.2 Materials and Biomedical Applications 37</p> <p>2.4.6 Summary 38</p> <p>References 38</p> <p><b>3 Bioink Design: From Shape to Function </b><b>47</b></p> <p>3.1 Significance of Bioink Design 47</p> <p>3.2 Categories of Bioink 47</p> <p>3.3 Three Evaluation Criteria of Bioink 48</p> <p>3.3.1 Printability 48</p> <p>3.3.2 Mechanical Properties 48</p> <p>3.3.3 Biocompatibility 48</p> <p>3.4 Strategies for Enabling the Printability 49</p> <p>3.4.1 Optimization of Cross-linking Sequence 49</p> <p>3.4.2 Support Material-Assisted Bioprinting 50</p> <p>3.4.3 Microgel-Based Bioink 50</p> <p>3.5 Strategies for Bioink Reinforcement 50</p> <p>3.5.1 Composite Bioink Design 50</p> <p>3.5.2 Microfiber-Assisted Reinforcement 51</p> <p>3.6 Strategies for Improving the Biocompatibility 51</p> <p>3.7 Representative Bioink Design Case: GelMA-Based Bioinks 52</p> <p>3.7.1 Property Characterization of the GelMA Bioink 52</p> <p>3.7.2 3D Bioprinting of GelMA Bioinks with Dual Cross-linking Strategy 53</p> <p>3.7.3 3D Bioprinting of GelMA Bioinks with Nanoclay as Support 55</p> <p>3.8 Commercial Bioink 57</p> <p>3.8.1 GelMA (EFL-GM Series) 58</p> <p>3.8.2 Fluorescent GelMA (EFL-GM-F Series) 58</p> <p>3.8.3 Porous GelMA (EFL-GM-PR Series) 60</p> <p>3.8.4 HAMA (EFL-HAMA Series) 64</p> <p>3.8.5 SilMA (EFL-SilMA Series) 64</p> <p>3.8.6 PCLMA (EFL-PCLMA Series) 64</p> <p>References 66</p> <p><b>4 Coaxial 3D Bioprinting </b><b>69</b></p> <p>4.1 Introduction 69</p> <p>4.1.1 Significance 69</p> <p>4.1.2 Two Categories 72</p> <p>4.1.2.1 Solid Fiber-Based Coaxial Bioprinting 72</p> <p>4.1.2.2 Hollow Fiber-Based Coaxial Bioprinting 73</p> <p>4.2 Printable Ink Materials 74</p> <p>4.2.1 Forming Mechanism 74</p> <p>4.2.2 Categories of Printable Bioinks 75</p> <p>4.2.2.1 Alginate 75</p> <p>4.2.2.2 Gelatin 78</p> <p>4.2.2.3 GelMA 79</p> <p>4.3 Representative Biomedical Applications 80</p> <p>4.3.1 Morphology-Controllable Microfiber-Based Organoids 80</p> <p>4.3.2 Vessel-on-a-Chip 81</p> <p>4.4 Future Perspective 85</p> <p>References 86</p> <p><b>5 Digital Light Projection-Based 3D Bioprinting </b><b>89</b></p> <p>5.1 Introduction 89</p> <p>5.1.1 Printing Process 89</p> <p>5.1.2 Significance 89</p> <p>5.2 Photocurable Biomaterials 91</p> <p>5.2.1 Photo-Cross-Linking Mechanism 92</p> <p>5.2.1.1 Conversion of Light Energy to Chemical Energy: Photoinitiator 92</p> <p>5.2.1.2 Formation of Molecular Network: Monomer Polymerization 93</p> <p>5.2.2 Typical Materials: Gelatin Methacryloyl (GelMA) 94</p> <p>5.2.2.1 Composition and Synthesis 94</p> <p>5.2.2.2 Substitution Degree 95</p> <p>5.3 Printing Equipment 96</p> <p>5.3.1 Optical Units 96</p> <p>5.3.1.1 Image Forming: Digital Micromirror Devices 97</p> <p>5.3.1.2 Objective Lens: Focusing System 97</p> <p>5.3.1.3 Material Storage Units 98</p> <p>5.3.1.4 Environment Controlling Systems 98</p> <p>5.3.1.5 Ink Tank: Transparent and Non-stick Bottom 99</p> <p>5.4 Mechanical Movement Units 99</p> <p>5.4.1 Lifting Mechanism: Main Movement 99</p> <p>5.4.2 Tilting Mechanism: Mixing and Separation 100</p> <p>5.4.2.1 Printing Error Formation and Optimization Strategies 100</p> <p>5.5 Optimization of Several Typical Structures 102</p> <p>5.5.1 Printing Strategies of Solid Structures 103</p> <p>5.5.2 Printing Strategies of Channel Structures 104</p> <p>5.5.3 Printing Strategies of Conduit Structures 104</p> <p>5.5.4 Printing Strategies of Thin-Walled Structures 105</p> <p>5.5.5 Printing Strategies of Microcolumn Structures 105</p> <p>5.6 Applications 107</p> <p>5.6.1 DLPBP Structures with High Precision 107</p> <p>5.6.2 Customized Physical Properties Bioprinting 107</p> <p>5.6.3 Regenerative and Biomedical Applications 108</p> <p>References 110</p> <p><b>6 Direct Ink Writing for 3D Bioprinting Applications </b><b>113</b></p> <p>6.1 Introduction 113</p> <p>6.2 Printable Bioinks in DIW 114</p> <p>6.2.1 Supporting Mechanisms and Representative Bioinks 115</p> <p>6.2.1.1 Rapid Solidification-Induced Mechanical Stiffness Improvement 115</p> <p>6.2.1.2 Yield-stress Additive-Induced Self-Supporting Capacity 119</p> <p>6.2.2 Design Criteria of Bioinks for Direct Writing Applications 121</p> <p>6.2.2.1 Rheological Properties 122</p> <p>6.2.2.2 Cross-linking Capacity 122</p> <p>6.2.2.3 Biocompatibility and Biodegradation 123</p> <p>6.2.2.4 Mechanical Properties 124</p> <p>6.3 Technical Specifics in Direct Ink Writing 124</p> <p>6.3.1 Investigation on Printability of Bioinks 124</p> <p>6.3.2 Different Printing Strategies in Rapid Solidification-Induced 3D Printing Approach 126</p> <p>6.3.2.1 Printing of Thermal Cross-linkable Biomaterials 126</p> <p>6.3.2.2 Printing of Ionic Cross-linkable Biomaterials 127</p> <p>6.3.2.3 Printing of Photo Cross-linkable Biomaterials 128</p> <p>6.3.2.4 Printing of Enzyme Cross-linkable Biomaterials 129</p> <p>6.3.3 3D Structure Printing Using Self-Supporting Material-Assisted 3D Printing Approach 130</p> <p>6.3.3.1 Internal Scaffold Additive-Assisted 3D Printing 130</p> <p>6.3.3.2 Microgel Additive-Assisted 3D Printing 132</p> <p>6.4 Representative Biomedical Applications 132</p> <p>6.4.1 Aortic Valve Printing 132</p> <p>6.4.2 Bone and Cartilage Tissue Printing 133</p> <p>6.4.3 Cardiac Tissue Printing 134</p> <p>6.4.4 Liver Tissue Printing 135</p> <p>6.4.5 Lung Tissue Printing 135</p> <p>6.4.6 Neural Tissue Printing 135</p> <p>6.4.7 Eye and Ear Printing 136</p> <p>6.4.8 Pancreas Printing 137</p> <p>6.4.9 Skin Tissue Printing 137</p> <p>6.4.10 Blood Vessel Printing 138</p> <p>6.5 Conclusions and Future Work 138</p> <p>References 139</p> <p><b>7 Liquid Support Bath–Assisted 3D Bioprinting </b><b>149</b></p> <p>7.1 Introduction 149</p> <p>7.2 Liquid Support Bath Materials 150</p> <p>7.2.1 Support Bath Materials Based on Different Supporting Mechanisms 151</p> <p>7.2.1.1 Unrecoverable Matrix Materials 151</p> <p>7.2.1.2 Buoyant Support Fluids 151</p> <p>7.2.1.3 Reversibly Self-Healing Hydrogels 153</p> <p>7.2.1.4 Yield-Stress Fluids 154</p> <p>7.2.2 Preparation Methods 156</p> <p>7.2.2.1 Microparticle Aggregation 156</p> <p>7.2.2.2 Homogenous Suspensions with Micro/Nanostructures 157</p> <p>7.2.2.3 Chemical Synthesis 158</p> <p>7.2.2.4 Other Methods 158</p> <p>7.2.3 Design Criteria for Ideal Liquid Support Bath Material 158</p> <p>7.2.3.1 Rheological Properties 158</p> <p>7.2.3.2 Chemical Stability 159</p> <p>7.2.3.3 Physical Stability 159</p> <p>7.2.3.4 Biocompatibility 161</p> <p>7.2.3.5 Hydrophilicity and Hydrophobicity 161</p> <p>7.2.3.6 Others 161</p> <p>7.3 Scientific Issues During Liquid Support Bath–Assisted 3D Printing 162</p> <p>7.3.1 Effects of Operating Conditions on Filament Formation in Support Bath 162</p> <p>7.3.2 Effects of Support Bath Materials on Filament Morphology 162</p> <p>7.3.2.1 Rheological Properties of Support Bath Materials 162</p> <p>7.3.2.2 Diffusion of Ink Materials into Surrounding Support Bath 163</p> <p>7.3.2.3 Interfacial Tension–Induced Filament Deformation 165</p> <p>7.3.3 Effects of Nozzle Movement on the Printed Structure 165</p> <p>7.3.4 Path Design in Liquid Support Bath–Assisted 3D Printing 166</p> <p>7.4 Post-treatments for Liquid Support Bath–Assisted 3D Printing 167</p> <p>7.4.1 Post-treatments in e-3DP 167</p> <p>7.4.2 Post-treatments in Support Bath–Enabled 3D Printing 169</p> <p>7.5 Representative Biomedical Applications 169</p> <p>7.5.1 Organ Printing 169</p> <p>7.5.2 Lab-on-a-Chip 171</p> <p>7.5.3 Other Bio-Related Applications 173</p> <p>7.6 Conclusions and Future Directions 173</p> <p>References 175</p> <p><b>8 Bioprinting Approaches of Hydrogel Microgel </b><b>179</b></p> <p>8.1 Introduction 179</p> <p>8.2 Auxiliary Dripping 179</p> <p>8.2.1 Inkjet Printing 180</p> <p>8.2.1.1 Piezoelectric Inkjet 180</p> <p>8.2.1.2 Thermal Bubble Inkjet 183</p> <p>8.2.2 Laser-Assisted Printing 184</p> <p>8.2.3 Electrohydrodynamic Printing 185</p> <p>8.3 Diphase Emulsion 195</p> <p>8.3.1 Nonaqueous Liquid Stirring 195</p> <p>8.3.2 Air-Assisted Atomization 197</p> <p>8.3.3 Microfluidic Technology 198</p> <p>8.4 Lithography Technology 202</p> <p>8.4.1 Replica Mold 202</p> <p>8.4.2 Discrepant Wettability 203</p> <p>8.4.3 Photomask Film 206</p> <p>8.4.4 Digital Light Processing 208</p> <p>8.5 Bulk Crushing 208</p> <p>References 211</p> <p><b>9 Biomedical Applications of Microgels </b><b>213</b></p> <p>9.1 Introduction 213</p> <p>9.1.1 Tiny Size 213</p> <p>9.1.2 Hydrogel Network 213</p> <p>9.1.3 Complex Mechanical Properties 214</p> <p>9.2 In Vitro Model 214</p> <p>9.3 Cell Therapy 216</p> <p>9.4 Drug Delivery 219</p> <p>9.5 Cell Amplification 223</p> <p>9.6 Single-Cell Capture 227</p> <p>9.7 Supporting Matrices 229</p> <p>9.8 Secondary Bioprinting 232</p> <p>References 235</p> <p><b>10 Microfiber-Based Organoids Bioprinting for In Vitro Model </b><b>237</b></p> <p>10.1 Introduction 237</p> <p>10.1.1 Significance and Challenge 237</p> <p>10.1.2 Hydrogel Materials 238</p> <p>10.2 Coaxial Bioprinting of Bioactive Cell-laden Microfiber 238</p> <p>10.2.1 Microfluidic Coaxial Bioprinting 239</p> <p>10.2.2 Coaxial Nozzle-Assisted Bioprinting 240</p> <p>10.3 Heteromorphic/Heterogeneous Microfiber Bioprinting 241</p> <p>10.3.1 Heteromorphic Microfiber 242</p> <p>10.3.2 Heterogeneous Microfiber 244</p> <p>10.4 3D Assembly of Microfibers 245</p> <p>10.4.1 3D Bioweaving 245</p> <p>10.4.2 3D Bioprinting 245</p> <p>10.5 Microfiber-Based Organoids Bioprinting for In Vitro Mini Tissue Models 247</p> <p>10.5.1 Vascular Organoid 247</p> <p>10.5.2 Myocyte Fiber 248</p> <p>10.5.3 Nerve Fiber 248</p> <p>10.5.4 Cardiomyocyte Fiber 249</p> <p>10.5.5 Co-cultured Multi-organoids Interactions 249</p> <p>10.6 Discussion and Outlook 250</p> <p>References 251</p> <p><b>11 Large Scale Tissues Bioprinting </b><b>257</b></p> <p>11.1 Introduction 257</p> <p>11.1.1 Challenges in Bioprinting Large Scale Tissues 257</p> <p>11.1.2 Strategies in Bioprinting Large Scale Tissue with Nutrient Networks 258</p> <p>11.1.2.1 Porous Network Printing 258</p> <p>11.1.2.2 Hollow Channel Network Printing 259</p> <p>11.1.2.3 Advanced Bioprinting Techniques-Enabled Printing Highly Biomimetic Vascular Network 259</p> <p>11.2 Large Scale Cell-laden Porous Structures Printing 259</p> <p>11.2.1 Independent Porous Structure Printing 259</p> <p>11.2.2 Interconnected Porous Structure Printing 261</p> <p>11.2.2.1 Directly Cell-laden Scaffold Printing 261</p> <p>11.2.2.2 Synchronous Bioprinting (Bioink and Sacrificial Ink Half and Half) 261</p> <p>11.2.3 Heterogeneous Independent/Interconnected Porous Structure Printing 262</p> <p>11.2.4 Long-term Perfusion Culture on a Chip 265</p> <p>11.2.5 Discussions (Properties, Pros, Cons, etc.) 265</p> <p>11.3 Large Scale Cell-laden Structures with Vascular Channel Printing 266</p> <p>11.3.1 Sacrificial Bioprinting 266</p> <p>11.3.2 Coaxial Bioprinting 267</p> <p>11.4 One-step Coaxial/Sacrificial Printing of Large Scale Vascularized Tissue Constructs 268</p> <p>11.4.1 Mechanism 268</p> <p>11.4.2 Freeform Structure with Vascular Channels Printing 269</p> <p>11.4.3 Heterogeneous Structure with Vascular Channels Printing 270</p> <p>11.4.4 Long-term Perfusion Culture on a Chip 272</p> <p>11.4.5 Discussion (Properties, Pros and Cons, etc.) 272</p> <p>11.5 Advanced Bioprinting Technique-Enabled Printing Highly Biomimetic Tissues 273</p> <p>11.5.1 Support Bath-Assisted Bioprinting 273</p> <p>11.5.2 Light-Based Bioprinting 273</p> <p>11.5.3 Discussion (Properties, Pros and Cons, etc.) 275</p> <p>11.6 Representative Biomedical Applications 275</p> <p>References 276</p> <p><b>12 3D Printing of Vascular Chips </b><b>281</b></p> <p>12.1 Introduction 281</p> <p>12.2 Construction Process of Hydrogel-Based Vascular Chips 282</p> <p>12.2.1 Damage-Free Demolding Process Based on Soft Fiber Template 282</p> <p>12.2.1.1 Damage-Free Demolding Process 283</p> <p>12.2.1.2 Comparative Analysis of Damage-Free and Conventional Demolding Processes 283</p> <p>12.2.2 Hydrogel Bonding Strategy Based on Twice-Cross-linking Mechanism 286</p> <p>12.2.2.1 Manufacturing Process of Hydrogel-Based Microfluidic Chips 287</p> <p>12.2.2.2 Mechanism Study 287</p> <p>12.2.2.3 Material Selection 288</p> <p>12.2.2.4 Feasible Domain 289</p> <p>12.2.2.5 Bonding Results 289</p> <p>12.2.3 Multi-Scale 3D Printing Process 291</p> <p>12.2.3.1 Mechanism of Multi-Scale 3D Printing Process 291</p> <p>12.2.3.2 Printing Parameters 292</p> <p>12.2.4 Construction Process of Hydrogel-Based Vascular Chips 293</p> <p>12.3 Characterization of Vascular Chips 295</p> <p>12.3.1 Fundamental Characterization of Vascular Chips 295</p> <p>12.3.1.1 Characterization of Endothelium Function of Channels 295</p> <p>12.3.1.2 Characterization of Endothelial Cells Viability 295</p> <p>12.3.1.3 Characterization of Endothelial Cells Morphology 296</p> <p>12.3.1.4 Characterization of Endothelium Channel 297</p> <p>12.3.2 Morphology Characterization of Hydrogel-Based Vascular Chips 298</p> <p>12.3.2.1 Multi-Level Bifurcated Channel Network Structure 298</p> <p>12.3.2.2 Multi-Scale Vascular Model 299</p> <p>12.3.2.3 Biomimicking Vascular Model 299</p> <p>12.3.3 Characterization of Vascular Function 302</p> <p>12.3.3.1 Nutrition Supply Function 302</p> <p>12.3.3.2 Expression of Key Functional Proteins in Endothelial Cells 302</p> <p>12.3.3.3 Simulation of Vascular Inflammation Reaction 303</p> <p>12.3.3.4 Characterization of Vascular Barrier Function 304</p> <p>12.4 Conclusion 307</p> <p>References 308</p> <p><b>13 3D Printing of In Vitro Models </b><b>311</b></p> <p>13.1 Introduction 311</p> <p>13.2 Typical 3D Bioprinting Technologies and Common Target Tissue/Organ Demand 312</p> <p>13.2.1 Inkjet-Based Bioprinting 313</p> <p>13.2.2 Extrusion-Based Bioprinting 314</p> <p>13.2.3 Light-Assisted Bioprinting 315</p> <p>13.3 Developing Process of In Vitro Models 316</p> <p>13.3.1 Mini-Tissue in 3D Growth State 316</p> <p>13.3.1.1 Sphere Mini-Tissue Model 316</p> <p>13.3.1.2 Fiber Mini-Tissue Model 317</p> <p>13.3.1.3 Array Mini-Tissue Model 318</p> <p>13.3.1.4 Limitations 319</p> <p>13.3.2 Organ-on-a-Chip with Multiplex Microenvironment 319</p> <p>13.3.2.1 Integrated Organ-on-a-Chip 321</p> <p>13.3.2.2 Modular Microfluidic System 322</p> <p>13.3.2.3 Multiple-Organ System 323</p> <p>13.3.2.4 Limitations 325</p> <p>13.3.3 Tissue/Organ Construct with Biomimicking Property 325</p> <p>13.3.3.1 Vascular Construct 326</p> <p>13.3.3.2 Vascularized Tissue Construct 328</p> <p>13.3.3.3 Limitations 330</p> <p>13.4 3D Printing of In Vitro Tumor Models 330</p> <p>13.4.1 Tumor Cell-Laden Construct 330</p> <p>13.4.2 Multi-Cell Tumor Sphere 331</p> <p>13.4.3 Tumor Metastasis Model with Angiogenesis 332</p> <p>13.5 Summary and Prospect 334</p> <p>13.5.1 Key Virtue and Comparison 334</p> <p>13.5.2 Outlook 334</p> <p>13.5.2.1 3D Bioprinting Technology 335</p> <p>13.5.2.2 Individual Differences 335</p> <p>13.5.2.3 Systematic Interaction 335</p> <p>13.5.2.4 Industrialization 335</p> <p>13.6 Conclusions 336</p> <p>References 336</p> <p>14 Protocol of Typical 3D Bioprinting 339</p> <p>Reference 343</p> <p>Index 345</p>
Yong He obtained his PhD degree in mechanical engineering at the ZheJiang University in 2008. He is currently a professor at College of Mechanical Engineering, ZheJiang University, China. He is also the deputy director of Key Lab of 3D Printing Process and Equipment of ZheJiang Province. His research is focused on the biofabrication with 3D printing especially on the building organs on chips. He has published more than 100 international journal papers and authorized over 30 patents. He has developed many special 3D printers for the fabrication of microfluidic devices, such as 3D sugar printer and 3D softmatter printer.<br> <br> Qing Gao obtained his BSc in mechanical design, manufacturing and automation at Hefei University of Technology in 2012. In 2017 he obtained his PhD degree in mechanical manufacturing and automation at the ZheJiang University and continue working in the university as a postdoc. He engages in research on biomanufacturing, biological 3D printing, organ chips, etc. As a core member, he has developed a portable biological 3D printer and high-performance GelMA bio-ink and is committed to building a "material + equipment + service" integrated intelligent manufacturing product system.<br> <br> Yifei Jin received his Ph.D. in mechanical engineering from the University of Florida in 2018, He joined the Department of Mechanical Engineering at the University of Nevada, ¿Reno as assistant professor in July 2019. His primary research interests mainly involve 3D bioprinting of living tissue constructs, 3D printing of hydrophobic functional materials, yield-stress fluids for 3D printing applications, stimuli-responsive materials for 4D printing applications, and fabrication of multi-layered capsules. His research emphasizes the coupling of materials and fabrication approaches to develop novel 3D printing techniques and understand the underlying physics during printing.<br>

Diese Produkte könnten Sie auch interessieren:

Verpacktes Leben - Verpackte Technik
Verpacktes Leben - Verpackte Technik
von: Udo Küppers, Helmut Tributsch
PDF ebook
97,99 €
Neuroendocrinology
Neuroendocrinology
von: David A. Lovejoy
PDF ebook
73,99 €
Bioinformatics
Bioinformatics
von: Frédéric Dardel, François Képès
PDF ebook
67,99 €