Details

Functional Nanomaterials


Functional Nanomaterials

Synthesis, Properties, and Applications
1. Aufl.

von: Wai-Yeung Wong, Qingchen Dong

169,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 06.06.2022
ISBN/EAN: 9783527828548
Sprache: englisch
Anzahl Seiten: 560

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Functional Nanomaterials</b> <p><b>Presents the most recent advances in the production and applications of various functional nanomaterials</b> <p>As new synthetic methods, characterization technologies, and nanomaterials (NMs) with novel physical and chemical properties are developed, researchers and scientists across disciplines need to keep pace with advancements in the dynamic field. <i>Functional Nanomaterials: Synthesis, Properties, and Applications</i> provides comprehensive coverage of fundamental concepts, synthetic methods, characterization technologies, device fabrication, performance evaluation, and both current and emerging applications. <p>Contributions from leading scientists in academia and industry present research developments of novel functional nanomaterials including metal nanoparticles, two-dimensional nanomaterials, perovskite-based nanomaterials, and polymer-based nanomaterials and nanocomposites. Topics include metal-based nanomaterials for electrochemical water splitting, cerium-based nanostructure materials for electrocatalysis, applications of rare earth luminescent nanomaterials, metal complex nanosheets, and methods for synthesizing polymer nanocomposites. <ul><li> Provides readers with timely and accurate information on the development of functional nanomaterials in nanoscience and nanotechnology</li> <li>Presents a critical perspective of the design strategy, synthesis, and characterization of advanced functional nanomaterials</li> <li>Focuses on recent research developments in emerging areas with emphasis on fundamental concepts and applications</li> <li>Explores functional nanomaterials for applications in areas such as electrocatalysis, bioengineering, optoelectronics, and electrochemistry</li> <li>Covers a diverse range of nanomaterials, including carbonaceous nanomaterials, metal-based nanomaterials, transition metal dichalcogenides-based nanomaterials, semiconducting molecules, and magnetic nanoparticles</li></ul> <p><i>Functional Nanomaterials </i>is an invaluable resource for chemists, materials scientists, electronics engineers, bioengineers, and others in the scientific community working with nanomaterials in the fields of energy, electronics, and biomedicine.
<p>Preface xi</p> <p>About the Editor xiii</p> <p><b>1 Earth-Abundant Metal-Based Nanomaterials for Electrochemical Water Splitting 1<br /></b><i>Weiran Zheng, Yong Li, and Lawrence Yoon Suk Lee</i></p> <p>1.1 Electrochemical Water Splitting 1</p> <p>1.1.1 General Principle 1</p> <p>1.1.2 Overpotential and Tafel Slope 3</p> <p>1.1.3 Current Techniques 4</p> <p>1.2 Earth-Abundant Metallic Nanomaterials 5</p> <p>1.2.1 Hydrogen Evolution Reaction (HER) 6</p> <p>1.2.1.1 Mechanism 6</p> <p>1.2.1.2 Metal (M<sup>0</sup>) Nanoparticles 7</p> <p>1.2.1.3 Metal (M<sup>0</sup>) Single-Atom Catalysts 8</p> <p>1.2.1.4 Metal Phosphides 11</p> <p>1.2.1.5 Metal Chalcogenides 12</p> <p>1.2.1.6 Metal Nitrides 14</p> <p>1.2.1.7 Metal Carbides 15</p> <p>1.2.1.8 Metal Oxides/(Oxy)hydroxides 15</p> <p>1.2.2 Oxygen Evolution Reaction 16</p> <p>1.2.2.1 Mechanism 16</p> <p>1.2.2.2 Metal Oxides/Hydroxides 19</p> <p>1.2.2.3 Metal (Mn<sup>+</sup>) Single-Atom Catalysts 25</p> <p>1.2.2.4 Metal Chalcogenides/Nitrides/Phosphides and Others 26</p> <p>1.3 Computer-Assisted Materials Discovery 28</p> <p>1.4 Challenge and Outlook 29</p> <p>1.4.1 Reliability Comparison Between Results 29</p> <p>1.4.2 Gap Between Industrial and Laboratorial Research 30</p> <p>1.4.3 Outlook 30</p> <p>References 31</p> <p><b>2 Studies on Cerium-Based Nanostructured Materials for Electrocatalysis 41<br /></b><i>Xuemei Zhou, Mingkai Zhang, Yuwei Jin, and Yongquan Qu</i></p> <p>2.1 Introduction 41</p> <p>2.2 Cerium-Based Nanostructure Materials 42</p> <p>2.3 Cerium-Based Electrocatalysts for HER 44</p> <p>2.3.1 Cerium-Doped Electrocatalysts for HER 44</p> <p>2.3.2 Composites with CeO<sub>2</sub> for HER 45</p> <p>2.4 Cerium-Based Electrocatalysts for OER 49</p> <p>2.4.1 Cerium-Doped Electrocatalysts for OER 50</p> <p>2.4.2 Composites with CeO<sub>2</sub> for OER 50</p> <p>2.5 Cerium-Based Electrocatalysts for ORR 57</p> <p>2.5.1 Noble Metals with Ce/Ceria for ORR 58</p> <p>2.5.2 Doping Ce Element into Earth-Abundant Electrocatalysts for ORR 59</p> <p>2.5.3 Ce<sub>2</sub> -Based Electrocatalysts for ORR 60</p> <p>2.6 Cerium-Based Electrocatalysts for Other Electrochemical Reactions 63</p> <p>2.7 Conclusions and Outlooks 65</p> <p>Acknowledgment 67</p> <p>References 67</p> <p><b>3 Metal-Free Carbon-Based Nanomaterials: Fuel Cell Applications as Electrocatalysts 73<br /></b><i>Lai-Hon Chung, Zhi-Qing Lin, and Jun He</i></p> <p>3.1 Introduction 73</p> <p>3.2 Heteroatom-Doped Carbon Nanomaterials 75</p> <p>3.2.1 Heteroatom-Doped Carbon Nanotubes 76</p> <p>3.2.2 Heteroatom-Doped Graphenes 80</p> <p>3.2.3 Heteroatom-Doped Graphdiyne 94</p> <p>3.2.4 Heteroatom-Doped Porous Carbon Nanomaterials 97</p> <p>3.2.5 Heteroatom-Doped Composite Materials 105</p> <p>3.2.6 Better ORR Performance in Acidic Medium 108</p> <p>3.3 Undoped Carbon Nanomaterials 111</p> <p>3.3.1 Edge as Defect 112</p> <p>3.3.2 Intrinsic/Topological Defects 114</p> <p>3.4 Carbon-Based Organic Framework 117</p> <p>3.5 Application in Fuel Cells 120</p> <p>3.5.1 Application in Alkaline Fuel Cell and PEMFC 121</p> <p>3.5.2 Application in Zinc–Air Battery 124</p> <p>3.6 Conclusion 129</p> <p>References 130</p> <p><b>4 Rare Earth Luminescent Nanomaterials and Their Applications 141<br /></b><i>Jianle Zhuang and Xuejie Zhang</i></p> <p>4.1 Introduction 141</p> <p>4.2 Rare Earth Based UCNPs 142</p> <p>4.2.1 Development of Upconversion Materials 142</p> <p>4.2.2 Upconversion Mechanism 143</p> <p>4.2.2.1 Excited-State Absorption (ESA) 143</p> <p>4.2.2.2 Energy Transfer Upconversion (ETU) 143</p> <p>4.2.2.3 Cooperative Upconversion (CUC) 144</p> <p>4.2.2.4 Cross Relaxation (CR) 144</p> <p>4.2.2.5 Photon Avalanche (PA) 144</p> <p>4.2.2.6 Energy Migration-Mediated Upconversion (EMU) 145</p> <p>4.2.3 Composition of UCNPs 145</p> <p>4.2.3.1 Host 145</p> <p>4.2.3.2 Activator 145</p> <p>4.2.3.3 Sensitizer 146</p> <p>4.2.4 Synthesis of UCNPs 146</p> <p>4.2.4.1 Thermal Decomposition 146</p> <p>4.2.4.2 Hydro/Solvothermal Synthesis 149</p> <p>4.2.4.3 Coprecipitation 149</p> <p>4.2.4.4 Sol–Gel Synthesis 150</p> <p>4.2.4.5 Microwave-Assisted Synthesis 150</p> <p>4.2.5 Characterization of UCNPs 150</p> <p>4.2.5.1 Identification of Crystal Structures 151</p> <p>4.2.5.2 Determination of Size and Morphology 152</p> <p>4.2.5.3 Characterization of Surface Moieties 153</p> <p>4.2.5.4 Composition Determination 154</p> <p>4.2.5.5 Measurement of Optical Properties 155</p> <p>4.2.5.6 Evaluation of Magnetic Properties 156</p> <p>4.2.6 Tuning of Upconversion Emission 156</p> <p>4.2.6.1 Tuning UC Emission Changing by the Chemical Composition and Varying Dopant Concentration 156</p> <p>4.2.6.2 Tuning UC Emission by Host Matrix Screening 157</p> <p>4.2.6.3 Tuning UC Emission by Interparticle Energy Transfer or Antenna Effect 158</p> <p>4.2.6.4 Tuning UC Emission Through Energy Migration 158</p> <p>4.2.6.5 Tuning UC Emission Using Cross-Relaxation Processes 160</p> <p>4.2.6.6 Tuning UC Emission Using Core/Shell Structures 160</p> <p>4.2.6.7 Tuning UC Emission Using Size- and Shape-Induced Surface Effects 160</p> <p>4.2.6.8 Tuning UC Emission Using FRET or RET 162</p> <p>4.2.6.9 Tuning Upconversion Emission Through External Stimulus 165</p> <p>4.2.7 Applications of UCNPs 165</p> <p>4.2.7.1 Bioimaging 165</p> <p>4.2.7.2 Therapy 168</p> <p>4.2.7.3 Optogenetics 170</p> <p>4.2.7.4 Sensing and Detection 171</p> <p>4.2.7.5 Photocatalysis 173</p> <p>4.2.7.6 UCNPs-Mediated Molecular Switches 175</p> <p>4.2.7.7 Other Technological Applications 176</p> <p>4.3 Rare Earth Based DCNPs 178</p> <p>4.3.1 Y<sub>3</sub> Al<sub>5</sub> O<sub>12</sub> :RE (RE = Ce<sup>3+</sup> ,Tb<sup>3+</sup>) 178</p> <p>4.3.1.1 Coprecipitation Approach 178</p> <p>4.3.1.2 Sol–Gel Method 179</p> <p>4.3.1.3 Solvothermal Method 181</p> <p>4.3.2 SrAl<sub>2</sub> O<sub>4</sub> :Eu<sup>2+</sup> ,Dy<sup>3+</sup> 182</p> <p>4.3.2.1 Hydrothermal Method 182</p> <p>4.3.2.2 Sol–Gel Method 183</p> <p>4.3.2.3 Microwave Method 183</p> <p>4.3.2.4 Electrospinning 183</p> <p>4.3.3 Y<sub>2</sub> O<sub>3</sub> :Eu<sup>3+</sup> 184</p> <p>4.3.4 LnVO<sub>4</sub> :Ln<sup>3+</sup> (Ln = La, Gd, Y; Ln<sup>3+</sup> = Eu<sup>3+</sup> ,Dy<sup>3+</sup> ,Sm<sup>3+</sup>) 186</p> <p>4.3.5 LaPO<sub>4</sub> :Ce<sup>3+</sup> ,Tb<sup>3+</sup> 187</p> <p>4.3.6 Applications 189</p> <p>4.3.6.1 Biological Imaging 189</p> <p>4.3.6.2 Tumor Treatment 190</p> <p>4.3.6.3 Fluorescent Ink 191</p> <p>4.4 Summary and Outlook 192</p> <p>References 193</p> <p><b>5 Metal Complex Nanosheets: Preparation, Property, and Application 207<br /></b><i>Ryota Sakamoto</i></p> <p>5.1 Introduction 207</p> <p>5.2 Preparation of Metal Complex Nanosheets 208</p> <p>5.2.1 Vacuum Phase Fabrication 208</p> <p>5.2.2 Mechanical Exfoliation 208</p> <p>5.2.3 Liquid-Phase Exfoliation 209</p> <p>5.2.4 Liquid/Liquid Interfacial Synthesis 211</p> <p>5.2.5 Gas/Liquid Interfacial Synthesis 213</p> <p>5.3 Properties of Metal Complex Nanosheets 215</p> <p>5.3.1 Electroproperties 215</p> <p>5.3.2 Photoproperties 217</p> <p>5.3.3 Magnetoproperties 219</p> <p>5.4 Outlook on Metal Complex Nanosheets 221</p> <p>References 221</p> <p><b>6 Synthesis, Properties, and Applications of Metal Halide Perovskite-Based Nanomaterials 225<br /></b><i>Mei-Li Sun, Cai-Xiang Zhao, Jun-Feng Shu, and Xiong Yin</i></p> <p>6.1 Introduction 225</p> <p>6.1.1 Crystal Structure and Phase of Metal Halide Perovskites 225</p> <p>6.1.2 Classification of Metal Halide Perovskite-Based Nanomaterials 227</p> <p>6.1.2.1 Organic–Inorganic Hybrid Perovskite Materials 228</p> <p>6.1.2.2 All-Inorganic Perovskite Materials 232</p> <p>6.1.2.3 Lead-Free Perovskite Materials and Low-Lead Perovskite Material 234</p> <p>6.2 Properties of Metal Halide Perovskite Materials 238</p> <p>6.2.1 Tunable Bandgap 238</p> <p>6.2.2 High Absorption Coefficient 239</p> <p>6.2.3 Excellent Charge Transport Performance 240</p> <p>6.2.4 Photoluminescence Properties 240</p> <p>6.3 Synthesis of Metal Halide Perovskite-Based Nanomaterials 242</p> <p>6.3.1 Hot Injection Method 243</p> <p>6.3.2 Ligand-Assisted Reprecipitation Method 244</p> <p>6.3.3 Solution Deposition Methods 244</p> <p>6.3.3.1 One-Step Method 245</p> <p>6.3.3.2 Two-Step Method 247</p> <p>6.3.3.3 Other Solution-Processing Methods 249</p> <p>6.4 Application of Metal Halide Perovskite-Based Nanomaterials 251</p> <p>6.4.1 Perovskite Solar Cells 251</p> <p>6.4.2 Perovskite Light-Emitting Diode 254</p> <p>6.4.3 Sensing 256</p> <p>6.4.4 Other Devices 257</p> <p>References 259</p> <p><b>7 Progress in Piezo-Phototronic Effect on 2D Nanomaterial-Based Heterostructure Photodetectors 275<br /></b><i>Yuqian Zhao, Ran Ding, Feng Guo, Zehan Wu, and Jianhua Hao</i></p> <p>7.1 Introduction 275</p> <p>7.2 Piezo-Phototronic Effect on the Junctions 277</p> <p>7.2.1 Fundamental Physics of Piezo-Phototronics 277</p> <p>7.2.2 Piezo-Phototronic Effect on P–N Junction 278</p> <p>7.2.3 Piezo-Phototronic Effect on Metal–Semiconductor Junction 282</p> <p>7.3 Piezo-Phototronic Effect on the Performance of P–N Junction Photodetectors 284</p> <p>7.3.1 Photodetector Based on 2D Homojunction 285</p> <p>7.3.2 Photodetectors Based on 1D–2D Heterostructure 286</p> <p>7.3.3 Photodetectors Based on 2D–2D Heterostructure 289</p> <p>7.3.4 Photodetectors Based on 3D–2D Heterostructure 293</p> <p>7.4 Conclusion and Future Perspectives 295</p> <p>Acknowledgments 297</p> <p>References 297</p> <p><b>8 Synthesis and Properties of Conducting Polymer Nanomaterials 303<br /></b><i>Ziyan Zhang, Tianyu Sun, Mingda Shao, and Ying Zhu</i></p> <p>8.1 Introduction 303</p> <p>8.2 Synthesis and Properties 305</p> <p>8.2.1 Chemical Synthesis and Properties 306</p> <p>8.2.2 Electrochemical Synthesis and Properties 314</p> <p>8.3 Summary 329</p> <p>References 329</p> <p><b>9 Conducting Polymer Nanomaterials for Electrochemical Energy Storage and Electrocatalysis 337<br /></b><i>Mingwei Fang, Xingpu Wang, Xueyan Li, and Ying Zhu</i></p> <p>9.1 Introduction 337</p> <p>9.2 Electrode Materials of Batteries 337</p> <p>9.2.1 Electrodes for Metal-Ion Batteries 338</p> <p>9.2.1.1 Electrodes for Lithium-Ion Batteries 338</p> <p>9.2.1.2 Electrodes for Other Metal-Ion Batteries 345</p> <p>9.2.2 Electrodes for Lithium–Sulfur Batteries 348</p> <p>9.2.3 Electrodes for All-Polymer Batteries 350</p> <p>9.2.4 Electrodes for Dye-Sensitized Solar Cell 352</p> <p>9.2.5 Electrodes for Bioelectric Batteries 352</p> <p>9.3 Electrocatalysis 355</p> <p>9.3.1 Oxygen Evolution Reaction (OER) 356</p> <p>9.3.2 Hydrogen Evolution Reaction (HER) 357</p> <p>9.3.3 Carbon Dioxide Reduction Reaction (CO<sub>2</sub> Rr) 361</p> <p>9.4 Supercapacitors 363</p> <p>9.4.1 CP as the Active Material 364</p> <p>9.4.2 CP Composites as the Active Materials 370</p> <p>9.5 Summary and Perspective 386</p> <p>References 386</p> <p><b>10 Conducting Polymer Nanomaterials for Bioengineering Applications 399<br /></b><i>Xiang Sun, Meiling Wang, You Liu, Xin Zhang, Yalan Chen, Shiying Li, and Ying Zhu</i></p> <p>10.1 Introduction 399</p> <p>10.2 Electronic Skin 399</p> <p>10.2.1 Wearable Electronic Devices 400</p> <p>10.2.2 Self-Healing E-Skin 403</p> <p>10.2.3 Energy-Saving E-Skin 405</p> <p>10.3 Bioengineering 406</p> <p>10.3.1 Tissue Regeneration Engineering 406</p> <p>10.3.2 Drug Delivery 414</p> <p>10.3.3 Actuators 422</p> <p>10.4 Chemical Sensors and Biosensors 424</p> <p>10.4.1 Chemical Sensors 424</p> <p>10.4.2 Biosensors 427</p> <p>10.5 Summary and Perspective 436</p> <p>References 436</p> <p><b>11 Methods for Synthesizing Polymer Nanocomposites and Their Applications 447<br /></b><i>Muwei Ji, Jintao Huang, and Caizhen Zhu</i></p> <p>11.1 Factors for Synthesizing Polymer Nanocomposites 448</p> <p>11.2 Solution Mixing 451</p> <p>11.3 Emulsion Polymerization 456</p> <p>11.4 Dispersion Polymerization and Dispersion Copolymerization 458</p> <p>11.5 Self-Assembly 461</p> <p>11.6 Melting 463</p> <p>11.7 In situ Polymerization 466</p> <p>11.8 Tailoring of Polymers Nanocomposite 471</p> <p>11.9 Application of Polymer Nanocomposites 474</p> <p>11.10 Outlook 481</p> <p>List of Abbreviations 481</p> <p>References 483</p> <p><b>12 Spin-Related Electrode Reactions in Nanomaterials 491<br /></b><i>Shengnan Sun and Yanglong Hou</i></p> <p>12.1 Introduction 491</p> <p>12.2 Factors Influencing the Electrochemical System 492</p> <p>12.2.1 Forces Caused by Magnetic Fields in Aqueous Solution 492</p> <p>12.2.2 Spin States of Electrocatalysts 495</p> <p>12.3 Spin-Related Electrode Reactions 496</p> <p>12.3.1 Electrodeposition of Metals or Alloys 496</p> <p>12.3.2 Hydrogen Evolution Reaction 498</p> <p>12.3.3 Oxygen Evolution Reaction 504</p> <p>12.3.4 Oxygen Reduction Reaction 513</p> <p>12.3.5 Other Catalytic Reactions 517</p> <p>12.3.6 Battery 518</p> <p>12.3.7 Others 522</p> <p>12.4 Conclusion and Outlook 523</p> <p>References 523</p> <p>Index 533</p>
<p><b><i>Wai-Yeung Wong </b>is Chair Professor of Chemical Technology and Dean of Faculty of Applied Science and Textiles at The Hong Kong Polytechnic University (PolyU), Hong Kong, China. He is also Professor of PolyU Shenzhen Research Institute, Shenzhen, China.</i></p> <p><b><i>Qingchen Dong</b> is Full Professor at Shanghai University, Shanghai, China.</i>
<p><b>Presents the most recent advances in the production and applications of various functional nanomaterials</b></p> <p>As new synthetic methods, characterization technologies, and nanomaterials (NMs) with novel physical and chemical properties are developed, researchers and scientists across disciplines need to keep pace with advancements in the dynamic field. <i>Functional Nanomaterials: Synthesis, Properties, and Applications</i> provides comprehensive coverage of fundamental concepts, synthetic methods, characterization technologies, device fabrication, performance evaluation, and both current and emerging applications. <p>Contributions from leading scientists in academia and industry present research developments of novel functional nanomaterials including metal nanoparticles, two-dimensional nanomaterials, perovskite-based nanomaterials, and polymer-based nanomaterials and nanocomposites. Topics include metal-based nanomaterials for electrochemical water splitting, cerium-based nanostructure materials for electrocatalysis, applications of rare earth luminescent nanomaterials, metal complex nanosheets, and methods for synthesizing polymer nanocomposites. <ul><li> Provides readers with timely and accurate information on the development of functional nanomaterials in nanoscience and nanotechnology</li> <li>Presents a critical perspective of the design strategy, synthesis, and characterization of advanced functional nanomaterials</li> <li>Focuses on recent research developments in emerging areas with emphasis on fundamental concepts and applications</li> <li>Explores functional nanomaterials for applications in areas such as electrocatalysis, bioengineering, optoelectronics, and electrochemistry</li> <li>Covers a diverse range of nanomaterials, including carbonaceous nanomaterials, metal-based nanomaterials, transition metal dichalcogenides-based nanomaterials, semiconducting molecules, and magnetic nanoparticles</li></ul> <p><i>Functional Nanomaterials </i>is an invaluable resource for chemists, materials scientists, electronics engineers, bioengineers, and others in the scientific community working with nanomaterials in the fields of energy, electronics, and biomedicine.

Diese Produkte könnten Sie auch interessieren:

Lanthanide and Actinide Chemistry
Lanthanide and Actinide Chemistry
von: Simon Cotton
PDF ebook
50,99 €
Mass Spectrometry of Inorganic and Organometallic Compounds
Mass Spectrometry of Inorganic and Organometallic Compounds
von: William Henderson, J. Scott McIndoe
PDF ebook
59,99 €
Neurodegenerative Diseases and Metal Ions, Volume 1
Neurodegenerative Diseases and Metal Ions, Volume 1
von: Astrid Sigel, Helmut Sigel, Roland K. O. Sigel
PDF ebook
228,99 €