Details

Targeted Drug Delivery


Targeted Drug Delivery


Methods & Principles in Medicinal Chemistry 1. Aufl.

von: Yogeshwar Bachhav, Raimund Mannhold, Helmut Buschmann, Jörg Holenz

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 24.10.2022
ISBN/EAN: 9783527827879
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Targeted Drug Delivery</b> <p><b>Novel approaches in targeted drug delivery for both small molecule and biopharmaceutical drugs</b> <p><i>Targeted Drug Delivery </i>explores a new frontier in drug research that has become a focus for developing novel medications. The work discusses a wide range of approaches for targeting small molecules as well as peptide and macromolecular drugs, from prodrugs to drug conjugates to drug carriers and devices, helping readers to stay up to date on the latest developments in the field. <p>The following key topics are addressed: <ul><li>Antibody conjugates, prodrugs, and suicide gene therapeutics</li> <li>Protac technology for selectively degrading target proteins</li> <li>Delivery of nucleic acid drugs</li> <li>Novel drug carriers, such as liposomes, vesicles, and nanoparticles</li> <li>Unmet medical needs for which there is a large market potential, such as viral infections and cancer</li></ul> <p>For chemists, pharmacologists, and professionals in the wider pharmaceutical industry, <i>Targeted Drug Delivery </i>is a comprehensive guide on how to solve the greatest challenge in treating many diseases: delivering a pharmaceutically active substance to the target tissue in the body.
<p>A Personal Foreword xiii</p> <p>Preface xv</p> <p><b>1 Basics of Targeted Drug Delivery 1<br /> </b><i>Kshama A. Doshi</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Concept of Bioavailability and Therapeutic Index 2</p> <p>1.2 Targeted Drug Delivery 2</p> <p>1.3 Strategies for Drug Targeting 3</p> <p>1.3.1 Passive Targeting 4</p> <p>1.3.1.1 Reticuloendothelial System (RES) System 4</p> <p>1.3.1.2 Enhanced Permeability and Retention (EPR) Effect 4</p> <p>1.3.1.3 Localized Delivery 4</p> <p>1.3.2 Active Targeting 5</p> <p>1.3.3 Physical Targeting 5</p> <p>1.3.3.1 Ultrasound for Targeting 6</p> <p>1.3.3.2 Magnetic Field for Targeting 6</p> <p>1.4 Therapeutic Applications of Targeted Drug Delivery 6</p> <p>1.4.1 Diabetes Management 6</p> <p>1.4.2 Neurological Diseases 7</p> <p>1.4.3 Cardiovascular Diseases 8</p> <p>1.4.4 Respiratory Diseases 9</p> <p>1.4.5 Cancer Indications 9</p> <p>1.5 Targeted Dug-Delivery Products 10</p> <p>1.6 Challenges 11</p> <p>1.6.1 Passive Targeting and EPR Effect 12</p> <p>1.6.2 Active Targeting 12</p> <p>1.7 Scale-up and Challenges 13</p> <p>1.8 Current Status 14</p> <p>1.9 Conclusion and Prospects 15</p> <p>References 16</p> <p><b>2 Addressing Unmet Medical Needs Using Targeted Drug-Delivery Systems: Emphasis on Nanomedicine-Based Applications 21<br /> </b><i>Chandrakantsing Pardeshi, Raju Sonawane, and Yogeshwar Bachhav</i></p> <p>2.1 Introduction 21</p> <p>2.2 Targeted Drug-Delivery Systems for Unmet Medical Needs 23</p> <p>2.2.1 Targeting Ligands 25</p> <p>2.2.1.1 Small Molecules as Targeting Ligands 25</p> <p>2.2.1.2 Aptamers as Targeting Ligands 27</p> <p>2.2.1.3 Antibodies as Targeting Ligands 28</p> <p>2.2.1.4 Lectins as Targeting Ligands 28</p> <p>2.2.1.5 Lactoferrins as Targeting Ligands 29</p> <p>2.2.2 Targeting Approaches 29</p> <p>2.2.2.1 Disease-Based Targeting 29</p> <p>2.2.2.2 Location-Based Targeting 32</p> <p>2.3 Regulatory Aspects and Clinical Perspectives 35</p> <p>2.4 Conclusion and Future Outlook 38</p> <p>List of Abbreviations 38</p> <p>References 39</p> <p><b>3 Nanocarriers-Based Targeted Drug Delivery Systems: Small and Macromolecules 45<br /> </b><i>Preshita Desai</i></p> <p>3.1 Nanocarriers (Nanomedicine) – Overview and Role in Targeted Drug Delivery 45</p> <p>3.2 Passive Targeting Approaches 50</p> <p>3.2.1 Enhanced Permeability and Retention-Effect-Based Targeting 50</p> <p>3.3 Active Targeting Approaches 52</p> <p>3.4 Stimuli Responsive Targeted NCs 54</p> <p>3.4.1 Redox Stimuli Responsive Targeted NCs 55</p> <p>3.4.2 pH Stimuli Responsive Targeted NCs 56</p> <p>3.4.3 Enzyme Stimuli Responsive Targeted NCs 57</p> <p>3.4.4 Temperature Stimuli Responsive Targeted NCs 58</p> <p>3.4.5 Ultrasound Stimuli Responsive Targeted NCs 59</p> <p>3.4.6 Magnetic Field Stimuli Responsive Targeted NCs 59</p> <p>3.5 Conclusion and Future Prospects 60</p> <p>References 60</p> <p><b>4 Liposomes as Targeted Drug-Delivery Systems 69<br /> </b><i>Raghavendra C. Mundargi, Neetika Taneja, Jayeshkumar J. Hadia, and Ajay J. Khopade</i></p> <p>4.1 Introduction 69</p> <p>4.2 Liposome Commercial Landscape 72</p> <p>4.3 Important Considerations in Development and Characterization of Liposomes 80</p> <p>4.3.1 Selection of Lipids 80</p> <p>4.3.2 Drug: Lipid Ratio 81</p> <p>4.3.3 PEGylation 82</p> <p>4.3.4 Ligand Anchoring 83</p> <p>4.3.5 Drug-Loading Techniques 84</p> <p>4.3.6 Physicochemical Characterization 85</p> <p>4.3.7 Manufacturing Process 86</p> <p>4.3.8 Product Stability 87</p> <p>4.4 Targeted Delivery of Liposomes 88</p> <p>4.4.1 Passive Targeting 89</p> <p>4.4.2 Active-Targeted Delivery 92</p> <p>4.4.2.1 Cancer Cell Targeting 94</p> <p>4.4.2.2 Tumor Endothelium Targeting 98</p> <p>4.5 Recent Clinical Trials with Liposomes with Investigational Liposome Candidates 102</p> <p>4.6 Factors Influencing the Clinical Translation of Liposomes for Targeted Delivery 103</p> <p>4.7 Conclusions and Future of Prospects of Targeted Liposomal-Delivery Systems 108</p> <p>List of Abbreviations 110</p> <p>References 112</p> <p><b>5 Antibody–Drug Conjugates: Development and Applications 127<br /> </b><i>Rajesh Pradhan, Meghna Pandey, Siddhanth Hejmady, Rajeev Taliyan, Gautam Singhvi, Sunil K. Dubey, and Sachin Dubey</i></p> <p>5.1 Introduction 127</p> <p>5.2 Design of ADCs 128</p> <p>5.2.1 Antibody 129</p> <p>5.2.2 Linker 130</p> <p>5.2.3 Payload 132</p> <p>5.3 Mechanism of Action 133</p> <p>5.4 Pharmacokinetic Considerations for ADCs 134</p> <p>5.4.1 Heterogeneity of ADCs 134</p> <p>5.4.2 Bioanalytical Considerations for ADCs 135</p> <p>5.4.3 Pharmacokinetic Parameters of ADCs 136</p> <p>5.4.3.1 Absorption 136</p> <p>5.4.3.2 Distribution 136</p> <p>5.4.3.3 Metabolism and Elimination 136</p> <p>5.5 Applications of ADCs 137</p> <p>5.5.1 Approved ADCs in the Market 137</p> <p>5.5.1.1 Gemtuzumab Ozogamicin 137</p> <p>5.5.1.2 Brentuximab Vedotin 139</p> <p>5.5.1.3 Ado-Trastuzumab Emtansine (T-DM1) 139</p> <p>5.5.1.4 Inotuzumab Ozogamicin 139</p> <p>5.5.1.5 Polatuzumab Vedotin-piiq 140</p> <p>5.5.1.6 Enfortumab Vedotin 140</p> <p>5.5.1.7 Trastuzumab Deruxtecan 140</p> <p>5.5.2 Use of ADCs in Rheumatoid Arthritis 141</p> <p>5.5.3 Use of ADCs in Bacterial Infections 141</p> <p>5.5.4 Use of ADCs in Ophthalmology 141</p> <p>5.6 Resistance of ADC 142</p> <p>5.7 Regulatory Aspects for ADCs 143</p> <p>5.7.1 Role of ONDQA 143</p> <p>5.7.2 Role of OBP 144</p> <p>5.8 Conclusion and Future Direction 144</p> <p>References 145</p> <p><b>6 Gene-Directed Enzyme–Prodrug Therapy (GDEPT) as a Suicide Gene Therapy Modality for Cancer Treatment 155<br /> </b><i>Prashant S. Kharkar and Atul L. Jadhav</i></p> <p>6.1 Introduction 155</p> <p>6.2 GDEPT for Difficult-to-Treat Cancers 159</p> <p>6.2.1 High-Grade Gliomas (HGGs) 159</p> <p>6.2.2 Triple-Negative Breast Cancer (TNBC) 161</p> <p>6.2.3 Other Cancers 162</p> <p>6.3 Novel Enzymes for GDEPT 164</p> <p>6.4 Conclusions 165</p> <p>References 165</p> <p><b>7 Targeted Prodrugs in Oral Drug Delivery 169<br /> </b><i>Milica Markovic, Shimon Ben-Shabat, and Arik Dahan</i></p> <p>7.1 Introduction 169</p> <p>7.1.1 Classic vs. Modern Prodrug Approach 170</p> <p>7.2 Modern, Targeted Prodrug Approach 171</p> <p>7.2.1 Prodrug Approach-Targeting Enzymes 171</p> <p>7.2.1.1 Valacyclovirase-Mediated Prodrug Activation 172</p> <p>7.2.1.2 Phospholipase A 2 -Mediated Prodrug Activation 173</p> <p>7.2.1.3 Antibody, Gene, and Virus-Directed Enzyme–Prodrug Therapy 175</p> <p>7.2.2 Prodrug Approach Targeting Transporters 176</p> <p>7.2.2.1 Peptide Transporter 1 177</p> <p>7.2.2.2 Monocarboxylate Transporter Type 1 179</p> <p>7.2.2.3 Bile Acid Transporters 180</p> <p>7.3 Computational Approaches in Targeted Prodrug Design 181</p> <p>7.4 Discussion 182</p> <p>7.5 Future Prospects and Clinical Applications 183</p> <p>7.6 Conclusion 183</p> <p>References 184</p> <p><b>8 Exosomes for Drug Delivery Applications in Cancer and Cardiac Indications 193<br /> </b><i>Anjali Pandya, Sreeranjini Pulakkat, and Vandana Patravale</i></p> <p>8.1 Extracellular Vesicles: An Overview 193</p> <p>8.1.1 Evolution of Exosomes 194</p> <p>8.1.2 Exosomes as Delivery Vehicles for Therapeutics 195</p> <p>8.1.2.1 Endogenous Loading Methods 198</p> <p>8.1.2.2 Exogenous Loading Methods 198</p> <p>8.2 Exosomes as Cancer Therapeutics 199</p> <p>8.2.1 Influence of Donor Cells 202</p> <p>8.2.2 Different Therapeutic Cargo Explored in Cancer Therapy 202</p> <p>8.2.2.1 Delivery of Proteins and Peptides 203</p> <p>8.2.2.2 Delivery of Chemotherapeutic Cargo 204</p> <p>8.2.2.3 Delivery of RNA 204</p> <p>8.3 Exosome Based Drug Delivery for Cardiovascular Diseases 206</p> <p>8.3.1 Delivery of Cardioprotective RNAs 207</p> <p>8.3.2 Exosomes Modified with Cardiac Targeting Peptides 208</p> <p>8.4 Clinical Evaluations and Future Aspects 210</p> <p>8.5 Conclusion 211</p> <p>Acknowledgments 212</p> <p>References 212</p> <p><b>9 Delivery of Nucleic Acids, Such as siRNA and mRNA, Using Complex Formulations 221<br /> </b><i>Ananya Pattnaik, Swarnaparabha Pany, A. S. Sanket, Sudiptee Das, Sanghamitra Pati, and Sangram K. Samal</i></p> <p>9.1 Introduction 221</p> <p>9.2 NA-Based Complex Delivery System 228</p> <p>9.2.1 Classical NA-Based Complex Delivery System 229</p> <p>9.2.1.1 Polymer-Based NA-Complex Delivery System 229</p> <p>9.2.1.2 Lipid-Based Complex NA Delivery System 230</p> <p>9.2.1.3 Peptide-Based Complex NA Delivery System 231</p> <p>9.2.2 Advanced NA-Based Complex Delivery Systems 232</p> <p>9.2.2.1 Inorganic and Hybrid NPs 232</p> <p>9.2.2.2 Self-Assembled NA Nanostructures 233</p> <p>9.2.2.3 Exosomes and NanoCells 233</p> <p>9.3 Applications of NA-Complex Delivery Systems 234</p> <p>9.3.1 Genome Editing 235</p> <p>9.3.2 Cancer Therapy 237</p> <p>9.3.3 Protein Therapy 238</p> <p>9.4 Future Prospective 239</p> <p>9.5 Conclusion 240</p> <p>Acknowledgments 240</p> <p>References 240</p> <p><b>10 Application of PROTAC Technology in Drug Development 247<br /> </b><i>Prashant S. Kharkar and Atul L. Jadhav</i></p> <p>10.1 Introduction 247</p> <p>10.2 Design of PROTACS: A Brief Overview 252</p> <p>10.3 Therapeutic Applications of PROTACs 254</p> <p>10.3.1 Cancer 255</p> <p>10.3.2 Neurodegenerative Disorders 261</p> <p>10.3.3 Immunological Diseases 263</p> <p>10.3.4 Viral Infections 264</p> <p>10.4 Challenges and Limitations in the Development PROTACs 265</p> <p>10.5 Future Perspectives 266</p> <p>References 266</p> <p><b>11 Metal Complexes as the Means or the End of Targeted Delivery for Unmet Needs 271<br /> </b><i>Trevor W. Hambley</i></p> <p>11.1 Introduction 271</p> <p>11.2 Class 1: Chaperones 272</p> <p>11.2.1 Chaperones that Protect Drugs 273</p> <p>11.2.2 Delivery to the Cells or Environments to Be Targeted 275</p> <p>11.2.3 Release from the Metal Where and When Required 276</p> <p>11.3 Class 2: Active Metal Complexes 276</p> <p>11.3.1 Targeted Platinum Agents 277</p> <p>11.4 Class 3: Dual-Threat Metal Complexes 279</p> <p>11.5 Targeting Strategies: The Chemical and Physical Environment 280</p> <p>11.5.1 Hypoxia 281</p> <p>11.5.2 pH-Based Targeting 282</p> <p>11.5.3 The EPR Effect 283</p> <p>11.6 Targeting Strategies: Transporters 284</p> <p>11.7 Targeting Strategies: Enzyme Activation 286</p> <p>11.8 Other Targeting Strategies 287</p> <p>11.9 Conclusions 288</p> <p>References 289</p> <p><b>12 Formulation of Peptides for Targeted Delivery 299<br /> </b><i>Pankti Ganatra, Karen Saiswani, Nikita Nair, Avinash Gunjal, Ratnesh Jain, and Prajakta Dandekar</i></p> <p>12.1 Introduction 299</p> <p>12.2 Peptides Used in Cancer Therapy 302</p> <p>12.2.1 Lung Cancer 303</p> <p>12.2.2 Melanoma 304</p> <p>12.2.3 Pancreatic Cancer 306</p> <p>12.2.4 Brain Cancer 307</p> <p>12.2.5 Breast Cancer 309</p> <p>12.2.6 Leukemia 312</p> <p>12.3 Peptide-Targeting Based on Site of Action 315</p> <p>12.3.1 Topical Delivery of Peptides 315</p> <p>12.3.2 Ocular Delivery of Peptides 317</p> <p>12.3.3 Brain Delivery of Peptides 319</p> <p>12.3.4 Lung-Targeted Delivery of Peptides 321</p> <p>12.4 Conclusion and Future Prospects 323</p> <p>References 324</p> <p><b>13 Antibody-Based Targeted T-Cell Therapies 327<br /> </b><i>Manoj Bansode, Kaushik Deb, and Sarmistha Deb</i></p> <p>13.1 Introduction 327</p> <p>13.2 Immune-Directed Cancer Cell Death 328</p> <p>13.3 Immunotherapy Strategies in Cancer 328</p> <p>13.4 T-Cell Therapy 329</p> <p>13.5 Naturally Occurring T Cells 329</p> <p>13.6 Genetically Modified Occurring T Cells 330</p> <p>13.7 Clinical Implication of T-Cell and CAR-T-Cell Therapy: 330</p> <p>13.8 Antibody-Induced T-Cell Therapy 332</p> <p>13.9 A Bispecific Antibody (BsAbs)-Induced T-Cell Therapy 332</p> <p>13.10 Formats of BsAbs 335</p> <p>13.11 Triomab Antibodies in T-Cell Therapy 335</p> <p>13.12 Bispecific Antibodies in T-Cell Therapy 336</p> <p>13.13 Clinically Approved T-Cell-Activating Antibodies 337</p> <p>13.14 Prospects 337</p> <p>13.15 Conclusion 339</p> <p>References 339</p> <p><b>14 Devices for Active Targeted Delivery: A Way to Control the Rate and Extent of Drug Administration 349<br /> </b><i>Jonathan Faro Barros, Phedra F. Sahraoui, Yogeshvar N. Kalia, and Maria Lapteva</i></p> <p>14.1 Introduction 349</p> <p>14.2 Macrofabricated Devices – Drug Infusion Pumps 351</p> <p>14.2.1 Peristaltic Pumps 351</p> <p>14.2.2 Gas-Driven Pumps 352</p> <p>14.2.3 Osmotic Pumps 353</p> <p>14.2.4 Insulin Pumps 354</p> <p>14.2.4.1 Diabetes and Insulin Product Development 354</p> <p>14.2.4.2 Open-Loop Insulin Delivery Systems 355</p> <p>14.2.4.3 Closed-Loop Insulin Delivery Systems 360</p> <p>14.3 Microfabricated and Nanofabricated Drug Delivery Devices 364</p> <p>14.3.1 Microelectromechanical Systems (MEMS) 364</p> <p>14.3.1.1 Microchip-Based MEMS 364</p> <p>14.3.1.2 Pump-Based MEMS 366</p> <p>14.3.1.3 MEMS – Efforts to Close the Loop 368</p> <p>14.3.2 Nanofabricated Drug Delivery Devices 369</p> <p>14.4 Noninvasive Active Drug Delivery Systems: Iontophoresis 372</p> <p>14.5 Conclusions 376</p> <p>Acknowledgments 377</p> <p>List of Abbreviations 377</p> <p>References 378</p> <p><b>15 Drug Delivery to the Brain: Targeting Technologies to Deliver Therapeutics to Brain Lesions 389<br /> </b><i>Nishit Pathak, Sunil K. Vimal, Cao Hongyi, and Sanjib Bhattacharyya</i></p> <p>15.1 Introduction 389</p> <p>15.2 Brain Tumor 390</p> <p>15.2.1 Obstacles to Brain Tumor-Targeted Delivery 391</p> <p>15.2.2 Brain-Tumor-Focused Nano-Drug Delivery 393</p> <p>15.3 Neurodegenerative Diseases 396</p> <p>15.3.1 Alzheimer’s Disease (AD) 396</p> <p>15.3.1.1 Alzheimer’s Disease Focused on Drug Delivery 396</p> <p>15.3.2 Parkinson’s Disease 399</p> <p>15.3.2.1 Drug Delivery Focussed on Parkinson’s Drug Disease 399</p> <p>15.3.3 Cerebrovascular Disease 400</p> <p>15.3.3.1 Drug Delivery for Cerebrovascular Disease 400</p> <p>15.3.4 Inflammatory Diseases (ID) 402</p> <p>15.3.4.1 Inflammatory Diseases (ID) Focused on Drug Delivery 402</p> <p>15.3.4.2 Drug Delivery for the Treatment of Neuro-AIDS 403</p> <p>15.3.5 Drug Delivery for Multiple Sclerosis (MS) 403</p> <p>15.4 Drug Delivery for CNS Disorders 404</p> <p>15.4.1 Tau Therapy 405</p> <p>15.4.2 Immunotherapy 407</p> <p>15.4.3 Gene Immunotherapy (GIT) 407</p> <p>15.4.4 Chemotherapy (CT) 408</p> <p>15.4.5 Photoimmunotherapy (PIT) 408</p> <p>15.5 Future Prospects 410</p> <p>15.6 Conclusions 410</p> <p>List of Abbreviations 411</p> <p>References 412</p> <p>Index 425</p>
<p><i><b>Yogeshwar Bachhav </b>is a pharmacist by training and holds a PhD in drug delivery systems from ICT, Mumbai (India). He has worked as research scientist for several years on a collaborative project between Pantec Biosolutions and Geneva University (Switzerland), and as formulation manager at Debiopharm Group, Lausanne (Switzerland). For the last 9 years he has been associated with AiCuris Anti-infective Cures AG (Germany) as in-charge for Pharmaceutical development of new drugs. In total, he has around 16 years of experience in the preformulation and formulation development of small molecules and peptides for oral, dermal and parenteral application and in drug substance manufacturing.</i>
<p><b>Novel approaches in targeted drug delivery for both small molecule and biopharmaceutical drugs</b> <p><i>Targeted Drug Delivery </i>explores a new frontier in drug research that has become a focus for developing novel medications. The work discusses a wide range of approaches for targeting small molecules as well as peptide and macromolecular drugs, from prodrugs to drug conjugates to drug carriers and devices, helping readers to stay up to date on the latest developments in the field. <p>The following key topics are addressed: <ul><li>Antibody conjugates, prodrugs, and suicide gene therapeutics</li> <li>Protac technology for selectively degrading target proteins</li> <li>Delivery of nucleic acid drugs</li> <li>Novel drug carriers, such as liposomes, vesicles, and nanoparticles</li> <li>Unmet medical needs for which there is a large market potential, such as viral infections and cancer</li></ul> <p>For chemists, pharmacologists, and professionals in the wider pharmaceutical industry, <i>Targeted Drug Delivery </i>is a comprehensive guide on how to solve the greatest challenge in treating many diseases: delivering a pharmaceutically active substance to the target tissue in the body.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €