Details

Carbon Dioxide Emission Management in Power Generation


Carbon Dioxide Emission Management in Power Generation


1. Aufl.

von: Lars O. Nord, Olav Bolland

93,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 12.02.2020
ISBN/EAN: 9783527826643
Sprache: englisch
Anzahl Seiten: 344

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides an engaging and clearly structured source of information on the capture and storage of CO2 <br> <br> Designed to bridge the gap between the many disciplines involved in carbon dioxide emission management, this book provides a comprehensive yet easy-to-understand introduction to the subject of CO2 capture. Fit for graduate students, practicing process engineers, and others interested in the subject, it offers a clear understanding and overview of thermal power plants in particular and of carbon dioxide capture and storage (CCS) in general. <br> <br> Carbon Dioxide Emission Management in Power Generation starts with a discussion of the greenhouse effect, climate change, and CO2 emissions as the rationale for the concept of CCS. It then looks at the long-term storage of CO2. A chapter covering different fossil fuels, their usage, and properties comes next, followed by sections on: CO2 generation, usage and properties; power plant technologies; theory of gas separation; power plant efficiency calculations; and classification of CO2 capture methods. Other chapters examine: CO2 capture by gas absorption and other gas separation methods; removing carbon from the fuel; pre- and post-combustion CO2 capture in power cycles; and oxy-combustion CO2 capture in power cycles. <br> <br> -Discusses both CO2 capture technologies as well as power generation technologies <br> -Bridges the gap between many different disciplines?from scientists, geologists and engineers, to economists <br> -One of the few books that covers all the different sciences involved in the capture and storage of CO2 <br> -Introduces the topic and provides useful information to the academic as well as professional reader <br> <br> Carbon Dioxide Emission Management in Power Generation is an excellent book for students who are interested in CO2 capture and storage, as well as for chemists in industry, environmental chemists, chemical engineers, geochemists, and geologists. <br>
<p>Acknowledgements xiii</p> <p>Nomenclature xv</p> <p>Organisation and Use of Book xxiii</p> <p><b>1 Introduction </b><b>1</b></p> <p>1.1 Greenhouse Effect 1</p> <p>1.2 Atmospheric CO<sub>2</sub> 3</p> <p>1.3 Natural Accumulations and Emissions of CO<sub>2</sub> 4</p> <p>1.4 Man-made Emissions of CO<sub>2</sub> 7</p> <p>1.5 Climate Change 9</p> <p>1.6 Fossil Fuel Resources 9</p> <p>1.7 Definition and Rationale of CO<sub>2</sub> Capture and Storage (CCS) 10</p> <p>1.8 Magnitude of CCS 12</p> <p>1.9 Public Acceptance of CCS 13</p> <p>1.10 Show-stoppers for CCS Deployment? 15</p> <p>1.11 History of CCS 16</p> <p><b>2 Long-Term Storage of CO<sub>2</sub> </b><b>19</b></p> <p>2.1 Storage Time and Volume 19</p> <p>2.2 Underground Storage 20</p> <p>2.2.1 Aquifer 20</p> <p>2.2.2 Enhanced Oil Recovery (EOR) with CO<sub>2</sub> 22</p> <p>2.2.3 Enhanced Gas Recovery (EGR) 28</p> <p>2.2.4 Enhanced Coal Bed Methane Recovery (ECBM) 29</p> <p>2.3 Ocean Storage 29</p> <p>2.4 Mineral Carbonation 30</p> <p>2.5 Industrial Use – Products 31</p> <p>2.6 Requirements for CO<sub>2</sub> Purity and Transportation 32</p> <p>2.7 CO<sub>2</sub> Compression and Conditioning 35</p> <p>2.8 Transportation Hazards of CO<sub>2</sub> 38</p> <p>2.9 Monitoring of CO<sub>2</sub> Storage 39</p> <p><b>3 Fuels </b><b>41</b></p> <p>3.1 Coal 41</p> <p>3.2 Liquid Fuels 46</p> <p>3.2.1 Diesel 46</p> <p>3.2.2 Methanol 48</p> <p>3.2.3 Ethanol 48</p> <p>3.2.4 Kerosene 49</p> <p>3.2.5 Ammonia 49</p> <p>3.3 Gaseous Fuels 49</p> <p>3.4 Fuel Usage 51</p> <p><b>4 CO<sub>2</sub> Generation, Usage, and Properties </b><b>53</b></p> <p>4.1 Short on CO<sub>2</sub> 53</p> <p>4.2 CO<sub>2</sub> Chemistry and Energy Conversion 53</p> <p>4.3 Combustion 57</p> <p>4.4 Analogy Between CO<sub>2</sub> Capture and Desulfurisation 58</p> <p>4.5 Industrial Processes 60</p> <p>4.5.1 Ammonia Production 60</p> <p>4.5.2 Cement Production 60</p> <p>4.5.3 Aluminium Production 61</p> <p>4.6 How Do We Use CO<sub>2</sub>? 61</p> <p>4.6.1 Chemicals and Petroleum 62</p> <p>4.6.2 Metals 62</p> <p>4.6.3 Manufacturing and Construction 62</p> <p>4.6.4 Food and Beverages 62</p> <p>4.6.5 Greenhouses 63</p> <p>4.6.6 Health Care 63</p> <p>4.6.7 Environmental 63</p> <p>4.6.8 Electronics 63</p> <p>4.6.9 Refrigerant 64</p> <p>4.6.10 CO<sub>2</sub> Laser 64</p> <p>4.6.11 Miscellaneous 64</p> <p>4.7 CO<sub>2</sub> and Humans 65</p> <p>4.8 Properties of CO<sub>2</sub> 67</p> <p>4.8.1 Density and Compressibility 69</p> <p>4.8.2 Specific Heat Capacity 70</p> <p>4.8.3 Ratio of Specific Heats 71</p> <p>4.8.4 Thermal Conductivity 72</p> <p>4.8.5 Viscosity 73</p> <p>4.8.6 Solubility in Water 74</p> <p><b>5 Power Plant Technologies </b><b>77</b></p> <p>5.1 Coal-Fired Power Plants 77</p> <p>5.1.1 Steam Cycle in a Coal Power Plant 77</p> <p>5.1.2 Pulverised Coal Combustion (PCC) 80</p> <p>5.1.3 Circulating Fluidised Bed Combustion (CFBC) 82</p> <p>5.1.4 Pressurised Fluidised Bed Combustion (PFBC) 84</p> <p>5.1.5 Integrated Gasification Combined Cycle (IGCC) 86</p> <p>5.1.5.1 Process Design 86</p> <p>5.1.5.2 IGCC Availability 87</p> <p>5.1.5.3 IGCC Efficiency 88</p> <p>5.2 Gas Turbine Power Plants 88</p> <p>5.2.1 Gas Turbines 88</p> <p>5.2.2 Classification of Gas Turbines 93</p> <p>5.2.3 Gas Turbines and Fuel Quality 94</p> <p>5.2.4 Gas Turbine Performance Model 95</p> <p>5.2.4.1 Compressor 97</p> <p>5.2.4.2 Air Filter 97</p> <p>5.2.4.3 Turbine 98</p> <p>5.2.5 Part-load Performance of a Gas Turbine in a Combined Cycle 98</p> <p>5.2.6 Diluted Hydrogen as Gas Turbine Fuel 99</p> <p>5.3 Combined Cycles 105</p> <p>5.3.1 Combined Gas Turbine and Steam Turbine Cycles 105</p> <p>5.3.2 Cycle Configurations 106</p> <p>5.4 Heat Recovery Steam Generators 109</p> <p>5.4.1 Introduction 109</p> <p>5.4.2 Properties of Water/Steam 110</p> <p>5.4.3 Dew Point of Flue Gas – Possible Corrosion 110</p> <p>5.4.4 TQ Diagram for Steam Generation 111</p> <p>5.5 Steam Cycle Cooling Systems 113</p> <p>5.5.1 Direct Water Cooling of the Condenser (A) 113</p> <p>5.5.2 Water Cooling with Wet Cooling Tower (B) 115</p> <p>5.5.3 Air-Cooled Condenser (C) 116</p> <p>5.5.4 Water-cooling with Dry Cooling Tower (D) 116</p> <p>5.6 Internal Combustion Engines 118</p> <p>5.7 Flue Gas Cleaning Technologies in Power Plants 118</p> <p>5.7.1 Particle Removal from Flue Gas 119</p> <p>5.7.2 Flue Gas Desulfurisation (FGD) 119</p> <p>5.7.2.1 Wet Scrubbers 120</p> <p>5.7.2.2 Spray Dry Scrubbers 120</p> <p>5.7.2.3 Sorbent Injection Processes 121</p> <p>5.7.2.4 Dry Scrubbers 121</p> <p>5.7.2.5 Seawater Scrubbing 121</p> <p>5.7.3 NO<i>x </i>Reduction 121</p> <p>5.7.3.1 Dry Low NO<i>x </i>Burners 122</p> <p>5.7.3.2 Fuel Staging 122</p> <p>5.7.3.3 Reburning 122</p> <p>5.7.3.4 Flue Gas Recirculation 122</p> <p>5.7.3.5 Water and Steam Injection 122</p> <p>5.7.3.6 Selective Catalytic Reduction (SCR) 123</p> <p>5.7.3.7 Selective Non-catalytic Reduction (SNCR) 123</p> <p>5.7.3.8 Mercury Control 124</p> <p><b>6 Theory of Gas Separation </b><b>125</b></p> <p>6.1 Gas Separation in CO<sub>2</sub> Capture 125</p> <p>6.2 Theory of Compression and Expansion 126</p> <p>6.2.1 Closed Systems 126</p> <p>6.2.2 Open Flow Systems 127</p> <p>6.2.3 Isothermal Compression 130</p> <p>6.2.4 Compression and Expansion with Irreversibilities 130</p> <p>6.3 Theory of Separation 131</p> <p>6.4 Minimum Work Requirement for Separation – Examples 135</p> <p><b>7 Power Plant Efficiency Calculations </b><b>141</b></p> <p>7.1 General Definition of Efficiency 141</p> <p>7.2 Definition of the Term ‘Efficiency’ 142</p> <p>7.3 Fuel Energy 142</p> <p>7.4 Efficiency Calculations 146</p> <p>7.5 Heat Rate Versus Efficiency 148</p> <p>7.6 Additional Consumption of Fuel for CO<sub>2</sub> Capture 149</p> <p>7.7 Relating Work Requirement for CO<sub>2</sub> Capture and Efficiency 150</p> <p>7.8 Terms Related to CO<sub>2</sub> Accounting 153</p> <p><b>8 Classification of CO<sub>2</sub> Capture Methods </b><b>159</b></p> <p>8.1 Following the CO<sub>2</sub> Path 159</p> <p>8.2 Principles for Combining Power Plants and CO<sub>2</sub> Capture 162</p> <p>8.2.1 Post-combustion CO<sub>2</sub> Capture 163</p> <p>8.2.2 Pre-combustion CO<sub>2</sub> Capture 163</p> <p>8.2.3 Oxy-combustion CO<sub>2</sub> Capture 163</p> <p>8.3 Dilution of CO<sub>2</sub> 163</p> <p><b>9 CO<sub>2</sub> Capture by Gas Absorption </b><b>167</b></p> <p>9.1 Theory of Absorption 167</p> <p>9.2 Absorption Process 170</p> <p>9.3 Solvents for Absorption 173</p> <p>9.3.1 Chemical – Organic 174</p> <p>9.3.2 Chemical – Inorganic 178</p> <p>9.3.3 Physical Solvents 181</p> <p>9.3.4 Ionic Liquids 183</p> <p>9.4 Solvent Contaminants 185</p> <p>9.5 Solvent Loading 187</p> <p>9.6 Energy Use in Absorption Processes 187</p> <p><b>10 CO<sub>2</sub> Capture by Other Gas Separation Methods </b><b>189</b></p> <p>10.1 Membranes 189</p> <p>10.1.1 General Information About Membranes 189</p> <p>10.1.2 Inorganic Membranes for H<sub>2</sub>, O<sub>2</sub>, and CO<sub>2</sub> Separation 191</p> <p>10.1.2.1 Dense Pd-Based Membranes for Hydrogen Separation 192</p> <p>10.1.2.2 Dense Electrolytes and Mixed Conducting Membranes 192</p> <p>10.1.2.3 Microporous Membranes for Hydrogen or CO<sub>2</sub> Separation 195</p> <p>10.1.3 Polymeric Membranes for CO<sub>2</sub> Separation 196</p> <p>10.1.3.1 Dense Polymeric Membranes 196</p> <p>10.1.3.2 Polymeric Membranes with Fixed-site-carrier (FSC) 197</p> <p>10.1.3.3 Polymeric Membranes Supported Liquid Membrane (SLM) 197</p> <p>10.1.4 Membrane Absorber 197</p> <p>10.1.5 Flux Through Membranes 199</p> <p>10.1.6 Challenges Facing Membrane Technology 200</p> <p>10.2 Adsorption 201</p> <p>10.2.1 General About Adsorption 201</p> <p>10.2.2 Adsorbent Material 202</p> <p>10.2.3 Adsorption–Desorption 205</p> <p>10.3 Calcium Looping 206</p> <p>10.4 Anti-sublimation 207</p> <p>10.5 Distillation 208</p> <p>10.6 CO<sub>2</sub> Hydrate Formation 209</p> <p>10.7 Electrochemical Separation Processes 209</p> <p><b>11 Removing Carbon from the Fuel – Pre-combustion CO<sub>2</sub> Capture </b><b>211</b></p> <p>11.1 Principle 211</p> <p>11.2 Hydrogenator and Desulfuriser 212</p> <p>11.3 Pre-reforming 212</p> <p>11.4 Reformers 214</p> <p>11.4.1 Steam Reforming (SR) 215</p> <p>11.4.2 Partial Oxidation Reforming (POX) 215</p> <p>11.4.3 Autothermal Reforming (ATR) 216</p> <p>11.4.4 Combined Reforming 217</p> <p>11.5 Gasification Theory and Principles 218</p> <p>11.6 Gasifiers 221</p> <p>11.6.1 Sasol–Lurgi Dry-ash Gasifier 223</p> <p>11.6.2 BGL Gasifier 223</p> <p>11.6.3 High-temperature Winkler (HTW) 225</p> <p>11.6.4 General Electric Gasifier 226</p> <p>11.6.5 Shell Gasifier 226</p> <p>11.6.6 ConocoPhillips E-Gas Gasifier 227</p> <p>11.6.7 Siemens SFG Gasifier 227</p> <p>11.6.8 Selection of Gasifiers 227</p> <p>11.7 Syngas Quenching 229</p> <p>11.8 Syngas Coolers 230</p> <p>11.9 COS Hydrolysis 230</p> <p>11.10 Water—Gas Shift (WGS) 231</p> <p>11.11 Integrated Pre-combustion Approaches 233</p> <p>11.11.1 Membrane-Enhanced Water–gas Shift 233</p> <p>11.11.2 Sorption-Enhanced Water-gas Shift 234</p> <p>11.11.3 Membrane-Enhanced Reforming 235</p> <p>11.11.4 Sorption-Enhanced Reforming 238</p> <p><b>12 Pre-combustion CO<sub>2</sub> Capture in Power Cycles </b><b>239</b></p> <p>12.1 Classification 239</p> <p>12.2 IGCC with CO<sub>2</sub> Capture 239</p> <p>12.2.1 Process Design 239</p> <p>12.2.2 IGCC with CO<sub>2</sub> Capture – Efficiency 242</p> <p>12.3 IRCC – Integrated Reforming Combined Cycle 243</p> <p><b>13 Post-combustion CO<sub>2</sub> Capture in Power Cycles </b><b>247</b></p> <p>13.1 Classification 247</p> <p>13.2 Power Plant with Absorption of CO<sub>2</sub> from the Flue Gas 249</p> <p>13.3 Post-combustion Efficiency Penalty – Absorption 251</p> <p>13.4 Steam Turbine Steam Extraction 251</p> <p>13.5 Flue Gas Pressure Drop 253</p> <p>13.6 Post-combustion CO<sub>2</sub> Capture at Atmospheric Pressure with Flue Gas Recirculation (FGR) 255</p> <p>13.7 Post-combustion CO<sub>2</sub> Capture at Elevated Pressure 256</p> <p>13.7.1 High-Pressure CO<sub>2</sub> Absorption Cycle 256</p> <p>13.7.2 Sargas Cycle 258</p> <p>13.7.3 Combicap Cycle 259</p> <p><b>14 Oxy-combustion CO<sub>2</sub> Capture in Power Cycles </b><b>261</b></p> <p>14.1 Classification 261</p> <p>14.2 Air Separation for Production of Oxygen 264</p> <p>14.2.1 Methods and Applications 264</p> <p>14.2.2 Air Separation by Cryogenic Distillation 266</p> <p>14.2.3 Mixed Conducting Membrane 271</p> <p>14.2.4 Chemical Looping Combustion (CLC) 272</p> <p>14.3 Oxy-combustion with Coal 274</p> <p>14.3.1 Pulverised Coal Oxy-combustion 274</p> <p>14.3.2 Circulating Fluidised Bed Oxy-combustion 276</p> <p>14.4 Oxy-combustion with Natural Gas 277</p> <p>14.4.1 Water Cycle 277</p> <p>14.4.2 S-Graz Cycle 278</p> <p>14.4.3 MATIANT Cycle 279</p> <p>14.4.4 Allam Cycle 279</p> <p>14.4.5 SCOC-CC 279</p> <p>14.4.6 AZEP – Advanced Zero Emission Power Plant 280</p> <p>14.4.7 Solid Oxide Fuel Cell (SOFC) with CO<sub>2</sub> Capture 280</p> <p>14.4.8 Chemical Looping Combustion (CLC) with Natural Gas 284</p> <p>References 285</p> <p>Glossary 307</p> <p>Index 311</p>
<p><b><i>Lars Nord</i></b><i> works at NTNU - The Norwegian University of Science and Technology in the Department of Energy and Process Engineering. He worked in the power generation industry for seven years before returning to academia in 2006 to pursue a PhD within CCS under Olav Bolland's supervision. Since 2014 he is Associate Professor at NTNU mainly focusing on power generation and CCS.</i> <p><b><i>Olav Bolland</i></b><i> works at NTNU - The Norwegian University of Science and Technology in the Faculty of Engineering. He has been active in the CCS field since the late 1980s, and has led and participated in many national and European projects within CCS. He is Professor at NTNU and Dean of the Faculty of Engineering.</i>
<p><b>Provides an engaging and clearly structured source of information on the capture and storage of<sub> </sub>CO2</b> <p>Designed to bridge the gap between the many disciplines involved in carbon dioxide emission management, this book provides a comprehensive yet easy-to-understand introduction to the subject of CO<sub>2</sub> capture. Fit for graduate students, practicing process engineers, and others interested in the subject, it offers a clear understanding and overview of thermal power plants in particular and of carbon dioxide capture and storage (CCS) in general. <p><i>Carbon Dioxide Emission Management in Power Generation</i> starts with a discussion of the greenhouse effect, climate change, and CO<sub>2</sub> emissions as the rationale for the concept of CCS. It then looks at the long-term storage of CO<sub>2</sub>. A chapter covering different fossil fuels, their usage, and properties comes next, followed by sections on: CO<sub>2</sub> generation, usage and properties; power plant technologies; theory of gas separation; power plant efficiency calculations; and classification of CO<sub>2</sub> capture methods. Other chapters examine: CO<sub>2</sub> capture by gas absorption and other gas separation methods; removing carbon from the fuel; pre- and post-combustion CO<sub>2</sub> capture in power cycles; and oxy-combustion CO<sub>2</sub> capture in power cycles. <ul> <li>Discusses both CO<sub>2</sub> capture technologies as well as power generation technologies</li> <li>Bridges the gap between many different disciplines—from scientists, geologists and engineers, to economists</li> <li>One of the few books that covers all the different sciences involved in the capture and storage of CO<sub>2</sub></li> <li>Introduces the topic and provides useful information to the academic as well as professional reader</li> </ul> <p><i>Carbon Dioxide Emission Management in Power Generation</i> is an excellent book for students who are interested in CO<sub>2</sub> capture and storage, as well as for chemists in industry, environmental chemists, chemical engineers, mechanical engineers, energy engineers, geochemists, and geologists.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €