Details

Hybrid Perovskite Solar Cells


Hybrid Perovskite Solar Cells

Characteristics and Operation
1. Aufl.

von: Hiroyuki Fujiwara

183,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 07.10.2021
ISBN/EAN: 9783527825868
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Unparalleled coverage of the most vibrant research field in photovoltaics!</b></p> <p> </p> <p>Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history.</p> <p>Hybrid Perovskite Solar Cells: Characteristics and Operation covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II).</p> <p>Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding.</p> <p>This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.</p>
<p>Preface xv</p> <p>About the Editor xix</p> <p><b>1 Introduction </b><b>1<br /> </b><i>Hiroyuki Fujiwara</i></p> <p>1.1 Hybrid Perovskite Solar Cells 1</p> <p>1.2 Unique Natures of Hybrid Perovskites 4</p> <p>1.2.1 Notable Characteristics of Hybrid Perovskites 5</p> <p>1.2.2 Fundamental Properties of MAPbI<sub>3</sub> 8</p> <p>1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency? 11</p> <p>1.3 Advantages of Hybrid Perovskite Solar Cells 12</p> <p>1.3.1 Band Gap Tunability 12</p> <p>1.3.2 High V<sub>oc</sub> 13</p> <p>1.3.3 Low Temperature Coefficient 16</p> <p>1.4 Challenges for Hybrid Perovskites 16</p> <p>1.4.1 Requirement of Improved Stability 17</p> <p>1.4.2 Large-Area Solar Cells 19</p> <p>1.4.3 Toxicity of Pb and Sn Compounds 20</p> <p>1.5 Overview of this Book 22</p> <p>Acknowledgment 23</p> <p>References 23</p> <p><b>2 Overview of Hybrid Perovskite Solar Cells </b><b>29</b><br /> <i>Tsutomu Miyasaka and Ajay K. Jena</i></p> <p>2.1 Introduction 29</p> <p>2.2 Historical Backgrounds of Halide Perovskite Photovoltaics 32</p> <p>2.3 Semiconductor Properties of Organo Lead Halide Perovskites 34</p> <p>2.4 Working Principle of Perovskite Photovoltaics 37</p> <p>2.5 Compositional Design of the Halide Perovskite Absorbers 40</p> <p>2.6 Strategy for Stabilizing Perovskite Solar Cells 41</p> <p>2.7 All Inorganic and Lead-Free Perovskites 48</p> <p>2.8 Development of High-Efficiency Tandem Solar Cells 52</p> <p>2.9 Conclusion and Perspectives 54</p> <p>References 55</p> <p><b>Part I Characteristics of Hybrid Perovskites </b><b>65</b></p> <p><b>3 Crystal Structures </b><b>67<br /> </b><i>Mitsutoshi Nishiwaki, Tatsuya Narikuri, and Hiroyuki Fujiwara</i></p> <p>3.1 What Is Hybrid Perovskite? 67</p> <p>3.2 Structures of Hybrid Perovskite Crystals 68</p> <p>3.2.1 Crystal Structure of MAPbI<sub>3</sub> 68</p> <p>3.2.2 Lattice Parameters of Hybrid Perovskites 71</p> <p>3.2.3 Secondary Phase Materials 75</p> <p>3.3 Tolerance Factor 77</p> <p>3.3.1 Tolerance Factor of Hybrid Perovskites 79</p> <p>3.3.2 Tolerance Factor of Mixed-Cation Perovskites 82</p> <p>3.4 Phase Change by Temperature 84</p> <p>3.5 Refined Structures of Hybrid Perovskites 86</p> <p>3.5.1 Orientation of Center Cations 86</p> <p>3.5.2 Relaxation of Center Cations 88</p> <p>Acknowledgment 89</p> <p>References 89</p> <p><b>4 Optical Properties </b><b>91</b><br /> <i>Hiroyuki Fujiwara, Yukinori Nishigaki, Akio Matsushita, and Taisuke Matsui</i></p> <p>4.1 Introduction 91</p> <p>4.2 Light Absorption in MAPbI<sub>3</sub> 93</p> <p>4.2.1 Visible/UV Region 96</p> <p>4.2.2 IR Region 98</p> <p>4.2.3 THz Region 99</p> <p>4.3 Band Gap of Hybrid Perovskites 101</p> <p>4.3.1 Band Gap Analysis of MAPbI<sub>3</sub> 101</p> <p>4.3.2 Band Gap of Basic Perovskites 103</p> <p>4.3.3 Band Gap Variation in Perovskite Alloys 105</p> <p>4.4 True Absorption Coefficient of MAPbI<sub>3</sub> 106</p> <p>4.4.1 Principles of Optical Measurements 107</p> <p>4.4.2 Interpretation of α Variation 108</p> <p>4.5 Universal Rules for Hybrid Perovskite Optical Properties 111</p> <p>4.5.1 Variation with Center Cation 111</p> <p>4.5.2 Variation with Halide Anion 112</p> <p>4.6 Subgap Absorption Characteristics 114</p> <p>4.7 Temperature Effect on Absorption Properties 116</p> <p>4.8 Excitonic Properties of Hybrid Perovskites 117</p> <p>References 119</p> <p><b>5 Physical Properties Determined by Density Functional Theory </b><b>123<br /> </b><i>Hiroyuki Fujiwara, Mitsutoshi Nishiwaki, and Yukinori Nishigaki</i></p> <p>5.1 Introduction 123</p> <p>5.2 What Is DFT? 124</p> <p>5.2.1 Basic Principles 124</p> <p>5.2.2 Assumptions and Limitations 126</p> <p>5.3 Crystal Structures Determined by DFT 128</p> <p>5.3.1 Hybrid Perovskite Structures 128</p> <p>5.3.2 Organic-Center Cations 131</p> <p>5.4 Band Structures 132</p> <p>5.4.1 Band Structures of Hybrid Perovskites 132</p> <p>5.4.2 Direct–Indirect Issue of Hybrid Perovskite 134</p> <p>5.4.3 Density of States 139</p> <p>5.4.4 Effective Mass 140</p> <p>5.5 Band Gap 141</p> <p>5.5.1 What Determines Band Gap? 142</p> <p>5.5.2 Effect of Center Cation 143</p> <p>5.5.3 Effect of Halide Anion 143</p> <p>5.6 Defect Physics 144</p> <p>Acknowledgment 147</p> <p>References 147</p> <p><b>6 Carrier Transport Properties </b><b>151<br /> </b><i>Hiroyuki Fujiwara and Yoshitsune Kato</i></p> <p>6.1 Introduction 151</p> <p>6.2 Carrier Properties of Hybrid Perovskites 153</p> <p>6.2.1 Self-Doping in Hybrid Perovskites 153</p> <p>6.2.2 Effect of Carrier Concentration on Mobility 155</p> <p>6.3 Carrier Mobility of MAPbI<sub>3</sub> 155</p> <p>6.3.1 Variation of Mobility with Characterization Method 156</p> <p>6.3.2 Temperature Dependence 159</p> <p>6.3.3 Effect of Effective Mass 160</p> <p>6.3.4 What Determines Maximum Mobility of MAPbI<sub>3</sub>? 161</p> <p>6.4 Diffusion Length 164</p> <p>6.5 Carrier Transport in Various Hybrid Perovskites 166</p> <p>References 168</p> <p><b>7 Ferroelectric Properties </b><b>173</b><br /> <i>Tobias Leonhard, Holger Röhm, Alexander D. Schulz, and Alexander Colsmann</i></p> <p>7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells 173</p> <p>7.2 Ferroelectricity 174</p> <p>7.2.1 Crystallographic Considerations 174</p> <p>7.2.2 Ferroelectricity in Thin Films 178</p> <p>7.2.3 Crystallography of MAPbI3 Thin Films 178</p> <p>7.3 Probing Ferroelectricity on the Microscale 179</p> <p>7.3.1 Atomic Force Microscopy 179</p> <p>7.3.2 Piezoresponse Force Microscopy 180</p> <p>7.3.3 Characterization of MAPbI<sub>3</sub> Thin Films with sf-PFM 183</p> <p>7.3.4 Correlative Domain Characterization 188</p> <p>7.3.4.1 Transmission Electron Microscopy 188</p> <p>7.3.4.2 X-ray Diffraction 189</p> <p>7.3.4.3 Electron Backscatter Diffraction 189</p> <p>7.3.4.4 Kelvin Probe Force Microscopy 191</p> <p>7.3.5 Polarization Orientation 191</p> <p>7.3.6 Ferroelastic Effects in MAPbI3 Thin Films 193</p> <p>7.4 Ferroelectric Poling of MAPbI3 195</p> <p>7.4.1 AC Poling of MAPbI3 196</p> <p>7.4.2 Creeping Poling and Switching Events on the Microscopic Scale 197</p> <p>7.4.3 Macroscopic Effects of Poling 200</p> <p>7.5 Impact of Ferroelectricity on the Performance of Solar Cells 201</p> <p>7.5.1 Pitfalls During Sample Measurements 201</p> <p>7.5.2 Charge Carrier Dynamics in Solar Cells 203</p> <p>References 203</p> <p><b>8 Photoluminescence Properties </b><b>207</b><br /> <i>Yasuhiro Yamada and Yoshihiko Kanemitsu</i></p> <p>8.1 Introduction 207</p> <p>8.2 Overview of Luminescent Properties 208</p> <p>8.3 Room-Temperature PL Spectra of a Hybrid Perovskite Thin Film 209</p> <p>8.4 Time-Resolved PL of a Hybrid Perovskite 213</p> <p>8.5 PL Quantum Efficiency 218</p> <p>8.6 Temperature-Dependent PL 220</p> <p>8.7 Material and Device Characterization by PL Spectroscopy 222</p> <p>8.7.1 Degradation and Healing of Hybrid Perovskites 222</p> <p>8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell 223</p> <p>8.8 Conclusion 224</p> <p>Acknowledgment 225</p> <p>References 225</p> <p><b>9 Role of Grain Boundaries </b><b>229<br /> </b><i>Jae Sung Yun</i></p> <p>9.1 Introduction 229</p> <p>9.2 Role of Grain Boundaries in Device Performance 230</p> <p>9.2.1 Potential Barrier at GBs and Charge Transport 231</p> <p>9.2.2 Engineering of GB Properties 234</p> <p>9.3 Ion Migration Through Grain Boundaries 241</p> <p>9.3.1 Enhanced Ion Transport at Grain Boundaries 241</p> <p>9.3.2 Role of GBs for Ion Migration 244</p> <p>9.4 Role of Grain Boundaries in Stability 246</p> <p>9.4.1 MAPbI3 Hydrated Phase at GBs 247</p> <p>9.4.2 Formation of Non-perovskite Phase at GBs of FAPbI3 248</p> <p>References 250</p> <p><b>10 Roles of Center Cations </b><b>253</b><br /> <i>Biwas Subedi, Juan Zuo, Marie Solange Tumusange, Maxwell M. Junda, Kiran Ghimire, and Nikolas J. Podraza</i></p> <p>10.1 Introduction 253</p> <p>10.2 Cubic Perovskite Phase Tolerance Factor 256</p> <p>10.3 Thin Film Stability 258</p> <p>10.4 Optoelectronic Property Variations 263</p> <p>10.5 Solar Cell Performance 268</p> <p>References 271</p> <p><b>Part II Hybrid Perovskite Solar Cells </b><b>275</b></p> <p><b>11 Operational Principles of Hybrid Perovskite Solar Cells </b><b>277</b><br /> <i>Hiroyuki Fujiwara, Yoshitsune Kato, Yuji Kadoya, Yukinori Nishigaki, Tomoya Kobayashi, Akio Matsushita, and Taisuke Matsui</i></p> <p>11.1 Introduction 277</p> <p>11.2 Operation of Hybrid Perovskite Solar Cells 278</p> <p>11.2.1 Operational Principle and Basic Structures 278</p> <p>11.2.2 Band Alignment 281</p> <p>11.3 Band Diagram of Hybrid Perovskite Solar Cells 283</p> <p>11.3.1 Device Simulation 283</p> <p>11.3.2 Experimental Observation 285</p> <p>11.4 Refined Analyses of Hybrid Perovskite Solar Cells 287</p> <p>11.4.1 Carrier Generation and Loss 287</p> <p>11.4.2 Power Loss Mechanism 291</p> <p>11.4.3 e-ARC Software 295</p> <p>11.5 What Determines V<sub>oc</sub>? 295</p> <p>11.5.1 Effect of Interface 297</p> <p>11.5.2 Effect of Passivation 300</p> <p>11.5.3 Effect of Grain Boundary 303</p> <p>References 305</p> <p><b>12 Efficiency Limits of Single and Tandem Solar Cells </b><b>309</b><br /> <i>Hiroyuki Fujiwara, Yoshitsune Kato, Masayuki Kozawa, Akira Terakawa, and Taisuke Matsui</i></p> <p>12.1 Introduction 309</p> <p>12.2 What Is the SQ Limit? 310</p> <p>12.2.1 Physical Model 311</p> <p>12.2.2 Blackbody Radiation 313</p> <p>12.2.3 SQ Limit 315</p> <p>12.3 Maximum Efficiencies of Perovskite Single Cells 319</p> <p>12.3.1 Concept of Thin-Film Limit 319</p> <p>12.3.2 EQE Calculation Method 321</p> <p>12.3.3 Maximum Efficiencies of Single Solar Cells 323</p> <p>12.3.4 Performance-Limiting Factors of Hybrid Perovskite Devices 325</p> <p>12.4 Maximum Efficiency of Tandem Cells 327</p> <p>12.4.1 Optical Model and Assumptions 328</p> <p>12.4.2 Calculation of Tandem-Cell EQE Spectra 329</p> <p>12.4.3 Maximum Efficiencies of Tandem Devices 331</p> <p>12.4.4 Realistic Maximum Efficiency of Tandem Cell 334</p> <p>12.5 Free Software for Efficiency Limit Calculation 335</p> <p>References 336</p> <p><b>13 Multi-cation Hybrid Perovskite Solar Cells </b><b>339<br /> </b><i>Jacob N. Vagott and Juan-Pablo Correa-Baena</i></p> <p>13.1 Introduction 339</p> <p>13.2 Types of A-Site Multi-cation Hybrid Perovskite Solar Cells 341</p> <p>13.2.1 Pb-Based Multi-cation Hybrid Perovskite Solar Cells 341</p> <p>13.2.2 Sn-Based Multi-cation Hybrid Perovskite Solar Cells 344</p> <p>13.3 Cation Selection in Mixed-Cation Hybrid Perovskite Solar Cells 345</p> <p>13.3.1 Organic A-Cations 345</p> <p>13.3.2 Inorganic A-Cations 347</p> <p>13.4 Fabrication of Mixed-Cation Hybrid Perovskite Solar Cells 349</p> <p>13.4.1 Traditional Fabrication Approach 349</p> <p>13.4.2 Emerging Fabrication Technologies 350</p> <p>13.5 Charge Transport Materials 353</p> <p>13.6 Surface Passivation 357</p> <p>13.7 Mixed B-Cation Hybrid Organic–Inorganic Perovskite Solar Cells 361</p> <p>13.8 Basic Characterization of Mixed-Cation Hybrid Perovskite Solar Cells 362</p> <p>References 365</p> <p><b>14 Tin Halide Perovskite Solar Cells </b><b>373<br /> </b><i>Gaurav Kapil and Shuzi Hayase</i></p> <p>14.1 Introduction 373</p> <p>14.1.1 Device Structure and Operating Principle 374</p> <p>14.1.2 Crystal Structure 375</p> <p>14.2 Tin Perovskite Solar Cells 376</p> <p>14.2.1 Intrinsic Properties 377</p> <p>14.2.2 Carrier Lifetime and Diffusion Length 378</p> <p>14.3 The Status of Sn Perovskite Solar Cells 379</p> <p>14.3.1 Different Type of Sn Perovskite Solar Cells 380</p> <p>14.3.1.1 CsSnI<sub>3</sub> 380</p> <p>14.3.1.2 MASnI<sub>3</sub> 383</p> <p>14.3.1.3 FASnI<sub>3</sub> 384</p> <p>14.3.1.4 FA<sub>x</sub>MA<sub>1-x</sub>SnI<sub>3</sub> 385</p> <p>14.3.1.5 2D/3D FASnI<sub>3</sub> 387</p> <p>14.3.1.6 Sn–Ge mixed PSCs 387</p> <p>14.3.2 Strategies to Improve the Efficiency 389</p> <p>14.3.2.1 Film Fabrication Methods 389</p> <p>14.3.2.2 Use of Reducing Agents 389</p> <p>14.3.2.3 Doping Effect of Large Organic Cations 390</p> <p>14.3.2.4 Device Engineering and Lattice Relaxation 391</p> <p>14.4 Sn–Pb Perovskite Solar Cells 393</p> <p>14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect) 396</p> <p>14.4.2 Physical Properties 398</p> <p>14.4.2.1 Intrinsic Carrier Concentration 398</p> <p>14.4.2.2 Carrier Lifetime and Diffusion Length 399</p> <p>14.5 The Status of Sn–Pb Perovskite Solar Cells 399</p> <p>14.5.1 Different Types of Sn–Pb Perovskite Solar Cells 401</p> <p>14.5.1.1 First Kind of Sn–Pb PSC absorber: MASn<sub>x</sub>Pb<sub>1-x</sub>I<sub>3</sub> 401</p> <p>14.5.1.2 Multi Cation Sn–Pb Perovskites: (FA, MA, Cs) (Sn, Pb)</p> <p>(I, Br, Cl)<sub>3</sub> 401</p> <p>14.5.2 Strategies to Improve the Efficiency 403</p> <p>14.5.2.1 Use of Additives 403</p> <p>14.5.2.2 Device Engineering 404</p> <p>14.6 Conclusion and Outlook 406</p> <p>References 406</p> <p><b>15 Stability of Hybrid Perovskite Solar Cells </b><b>411</b><br /> <i>Seigo Ito</i></p> <p>15.1 Introduction: Trigger of the Degradation 411</p> <p>15.2 Crystal Quality for Stable Perovskite Solar Cells 413</p> <p>15.3 Water-Stable and MA-Free Perovskites 415</p> <p>15.4 Defects and Grain-Surface Ion Migration, and Passivation (Including 2-D Crystal) 417</p> <p>15.5 Degradation at Interface with Metal Oxides 420</p> <p>15.6 Porous Carbon Electrode to Be Very Stable Multiporous-Layered- Electrode Perovskite Solar Cells (MPLE-PSC) 420</p> <p>15.7 Damp Heat Tests 421</p> <p>15.8 Conclusion 422</p> <p>References 425</p> <p><b>16 Hysteresis in J–V Characteristics </b><b>429<br /> </b><i>Wolfgang Tress</i></p> <p>16.1 Introduction and Definitions: What Do We Mean by Hysteresis? 429</p> <p>16.2 The <i>JV</i> Curve of a Solar Cell: What Does It Tell? 431</p> <p>16.3 Characteristics of Hysteresis: What Does It Depend on? 437</p> <p>16.4 Mechanistic and Microscopic Origin of Hysteresis: What Changes Slowly? 442</p> <p>16.5 Issues with Hysteresis: How to Tune/Avoid/Suppress? 453</p> <p>16.6 Conclusion and Open Questions 453</p> <p>References 454</p> <p><b>17 Perovskite-Based Tandem Solar Cells </b><b>463</b><br /> <i>Klaus Jäger and Steve Albrecht</i></p> <p>17.1 Introduction 463</p> <p>17.2 Architectures of Tandem Solar Cells 465</p> <p>17.2.1 Monolithic Two-Terminal Solar Cells 466</p> <p>17.2.2 Four-Terminal Tandem Solar Cells 467</p> <p>17.2.3 Other Concepts 468</p> <p>17.2.4 Bifacial Solar Cells 469</p> <p>17.3 Efficiency Limits of Multi-Junction Solar Cells 469</p> <p>17.3.1 Efficiency Limit for Four-Terminal Tandem Solar Cells 470</p> <p>17.3.2 Efficiency Limit for Two-Terminal Tandem Solar Cells 472</p> <p>17.3.3 Efficiency Limit for Cells with More Junctions 474</p> <p>17.4 Perovskites as Tandem Solar Cell Materials 474</p> <p>17.5 Experimental Results on Perovskite-Based Tandem Solar Cells 477</p> <p>17.5.1 Perovskite/Silicon Tandem Solar Cells 482</p> <p>17.5.2 Perovskite-Chalcogenide Tandem Solar Cells 489</p> <p>17.6 Energy Yield Calculations 493</p> <p>17.6.1 Illumination Model 494</p> <p>17.6.2 Optical Model 494</p> <p>17.6.3 Electrical Model 496</p> <p>17.6.4 Temperature Model 498</p> <p>17.6.5 Energy Yield Calculation 498</p> <p>17.7 Conclusions and Outlook 499</p> <p>Acknowledgments 500</p> <p>References 500</p> <p><b>18 All Perovskite Tandem Solar Cells </b><b>509</b><br /> <i>Zhaoning Song and Yanfa Yan</i></p> <p>18.1 Introduction 509</p> <p>18.2 Working Principles of Tandem Solar Cells 511</p> <p>18.2.1 Why to Use Tandem Solar Cells 511</p> <p>18.2.2 Tandem Device Architectures 513</p> <p>18.2.3 PCE of Tandem Solar Cells 514</p> <p>18.3 Wide-Bandgap Perovskite Solar Cells 516</p> <p>18.3.1 Wide-Bandgap Mixed I-Br Perovskites 516</p> <p>18.3.2 Current State of Wide-Bandgap Perovskite Solar Cells 518</p> <p>18.3.3 Critical Issues of Wide-Bandgap Perovskite Cells 519</p> <p>18.4 Low-Bandgap Perovskite Solar Cells 520</p> <p>18.4.1 Low-Bandgap Mixed Sn-Pb Perovskites 520</p> <p>18.4.2 Current State of Low-Bandgap Perovskite Solar Cells 524</p> <p>18.4.3 Critical Issues of Low-Bandgap Perovskite Cells 525</p> <p>18.5 All-Perovskite Tandem Solar Cells 527</p> <p>18.5.1 4-T All-Perovskite Tandem Solar Cells 527</p> <p>18.5.2 2-T All-Perovskite Tandem Solar Cells 528</p> <p>18.5.3 Limitations and Challenges of All-Perovskite Tandem Solar Cells 533</p> <p>18.6 Conclusion and Outlooks 534</p> <p>Acknowledgments 535</p> <p>References 535</p> <p>A Optical Constants of Hybrid Perovskite Materials 541<br /> <i>Yukinori Nishigaki, Akio Matsushita, Alvaro Tejada, Taisuke Matsui, and Hiroyuki Fujiwara</i></p> <p>References 562</p> <p>B Numerical Values of Shockley–Queisser Limit 563<br /> <i>Yoshitsune Kato and Hiroyuki Fujiwara</i></p> <p>Index 567 </p>
<p><b><i>Hiroyuki Fujiwara</b> is a Professor at the Department of Electrical, Electronic and Computer Engineering, Gifu University. He received his Ph.D. degree from Tokyo Institute of Technology. He was a research associate at The Pennsylvania State University during 1996-1998. In 1998, he joined the Electrotechnical Laboratory, Ministry of International Trade and Industry, Japan. In 2007, he became a team leader of Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology</i></p> (AIST) in Japan.
<p><b>Unparalleled coverage of the most vibrant research field in photovoltaics! </b></p> <p>Hybrid perovskites, revolutionary game-changing semiconductor materials, have every favorable optoelectronic characteristic necessary for realizing high efficiency solar cells. The remarkable features of hybrid perovskite photovoltaics, such as superior material properties, easy material fabrication by solution-based processing, large-area device fabrication by an inkjet technology, and simple solar cell structures, have brought enormous attentions, leading to a rapid development of the solar cell technology at a pace never before seen in solar cell history. <p><i>Hybrid Perovskite Solar Cells: Characteristics and Operation</i> covers extensive topics of hybrid perovskite solar cells, providing easy-to-read descriptions for the fundamental characteristics of unique hybrid perovskite materials (Part I) as well as the principles and applications of hybrid perovskite solar cells (Part II). <p>Both basic and advanced concepts of hybrid perovskite devices are treated thoroughly in this book; in particular, explanatory descriptions for general physical and chemical aspects of hybrid perovskite photovoltaics are included to provide fundamental understanding. <p>This comprehensive book is highly suitable for graduate school students and researchers who are not familiar with hybrid perovskite materials and devices, allowing the accumulation of the accurate knowledge from the basic to the advanced levels.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €