Details

Perovskite Solar Cells


Perovskite Solar Cells

Materials, Processes, and Devices
1. Aufl.

von: Shahzada Ahmad, Samrana Kazim, Michael Grätzel

162,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 28.10.2021
ISBN/EAN: 9783527825783
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Presents a thorough overview of perovskite research, written by leaders in the field of photovoltaics  </b></p> <p>The use of perovskite-structured materials to produce high-efficiency solar cells is a subject of growing interest for academic researchers and industry professionals alike. Due to their excellent light absorption, longevity, and charge-carrier properties, perovskite solar cells show great promise as a low-cost, industry-scalable alternative to conventional photovoltaic cells. </p> <p><i>Perovskite Solar Cells: Materials, Processes, and Devices</i> provides an up-to-date overview of the current state of perovskite solar cell research. Addressing the key areas in the rapidly growing field, this comprehensive volume covers novel materials, advanced theory, modelling and simulation, device physics, new processes, and the critical issue of solar cell stability. Contributions by an international panel of researchers highlight both the opportunities and challenges related to perovskite solar cells while offering detailed insights on topics such as the photon recycling processes, interfacial properties, and charge transfer principles of perovskite-based devices.  </p> <ul> <li>Examines new compositions, hole and electron transport materials, lead-free materials, and 2D and 3D materials </li> <li>Covers interface modelling techniques, methods for modelling in two and three dimensions, and developments beyond Shockley-Queisser Theory </li> <li>Discusses new fabrication processes such as slot-die coating, roll processing, and vacuum sublimation </li> <li>Describes the device physics of perovskite solar cells, including recombination kinetics and optical absorption </li> <li>Explores innovative approaches to increase the light conversion efficiency of photovoltaic cells </li> </ul> <p><i>Perovskite Solar Cells: Materials, Processes, and Devices </i>is essential reading for all those in the photovoltaic community, including materials scientists, surface physicists, surface chemists, solid state physicists, solid state chemists, and electrical engineers. </p>
<p>Foreword xv</p> <p><b>1 Chemical Processing of Mixed-Cation Hybrid Perovskites: Stabilizing Effects of Configurational Entropy 1<br /> </b><i>Feray Ünlü, Eunhwan Jung, Senol Öz, Heechae Choi, Thomas Fischer, andSanjay Mathur</i></p> <p>1.1 Introduction 1</p> <p>1.1.1 Stability Issues of Organic–Inorganic Hybrid Perovskites 2</p> <p>1.2 Crystal Structure of Perovskites 4</p> <p>1.2.1 Goldschmidt Tolerance Factor for 3D Structure 5</p> <p>1.2.2 Octahedral Factor 5</p> <p>1.2.3 Role of A-Site Cation 7</p> <p>1.2.4 Theoretical Calculations: Molecular Dynamics of A-Site Cation 8</p> <p>1.2.5 Entropy of Mixing: Configurational Effects in Mixed-Cation Perovskites 11</p> <p>1.3 Multiple A-Site Cation Perovskites 12</p> <p>1.3.1 FA<sup>+</sup>/MA<sup>+</sup> Alloying for Higher Phase Stability and Photovoltaic Efficiency 12</p> <p>1.3.2 Cesium Inclusion for Thermal Stability 13</p> <p>1.3.3 Rb<sup>+</sup> Small-Cation Influence on Perovskite Structure for Thermal Stability 15</p> <p>1.3.4 Guanidinium Large-Cation Influence on Perovskite Structure for Stability 16</p> <p>1.3.5 Triple- and Quadruple-Cation Hybrid Perovskites for Stability and Optimum Performance 17</p> <p>1.3.6 Larger Organic Cations: Reducing Dimensionality for Improved Thermal Stability 20</p> <p>1.4 Conclusion and Perspectives 22</p> <p>Acknowledgments 24</p> <p>References 24</p> <p><b>2 Flash Infrared Annealing for Processing of Perovskite Solar Cells 33<br /> </b><i>Sandy Sánchez and Anders Hagfeldt</i></p> <p>2.1 Introduction 33</p> <p>2.2 Perovskite Crystal Nucleation and Growth from Solution 34</p> <p>2.2.1 The Antisolvent Dripping Method 34</p> <p>2.2.2 Thermodynamics of Nucleation and Crystal Growth 34</p> <p>2.2.3 Kinetic Process for Rapid Thermal Growth 36</p> <p>2.3 Rapid Thermal Annealing 37</p> <p>2.3.1 The FIRA Method 37</p> <p>2.3.2 FIRA and Antisolvent 39</p> <p>2.3.3 Perovskite Film Crystallization for a Single IR Pulse 40</p> <p>2.3.4 Perovskite Crystallization with Pulse Duration 42</p> <p>2.3.5 Pulsed FIRA Method for Inorganic Perovskite Composition 45</p> <p>2.3.6 Warmed-Pulsed FIRA Method 46</p> <p>2.3.7 Crystallization Behavior of Mixed Perovskite Solutions 47</p> <p>2.4 Structural Analysis of FIRA-Annealed Perovskite Films with Variable Pulse Time 50</p> <p>2.4.1 Planar and Mesoporous Substrates 50</p> <p>2.4.2 Crystal Structure Analysis 51</p> <p>2.4.3 Structure of the Intermediate Phases 53</p> <p>2.4.4 Internal Crystal Domain Structure 56</p> <p>2.5 A Cost-Effective and Environmentally Friendly Method 57</p> <p>2.5.1 Life-Cycle Assessment (LCA) of the Perovskite Film Synthesis Methods 57</p> <p>2.5.2 Relative Cost and Environmental Impact of the AS and FIRA Methods 58</p> <p>2.6 Application for MAPI<sub>3</sub> Perovskite Solar Cells 60</p> <p>2.6.1 Single IR Pulse and MAPbI<sub>3</sub> Perovskite Composition 60</p> <p>2.6.2 Large-Area Devices 60</p> <p>2.7 Planar Devices Architecture and Mixed Perovskite Composition 64</p> <p>2.7.1 Thin Film Analysis 64</p> <p>2.7.2 PV Performance and Electronic Characteristic of the Devices 64</p> <p>2.8 Pulsed FIRA for Inorganic Perovskite Solar Cells 67</p> <p>2.8.1 Thin Film Analysis 67</p> <p>2.8.2 PV Performance 68</p> <p>2.9 Rapid Manufacturing of PSCs with an Adapted Perovskite Chemical Composition 71</p> <p>2.9.1 Rapid Annealed TiO2 Mesoscopic Film 71</p> <p>2.9.2 FCG Perovskite Stabilized with TBAI 72</p> <p>2.9.3 PV Performance of the Manufactured PSCs 73</p> <p>2.10 Outlook and Technical Details 75</p> <p>2.10.1 Optimization of FIRA Process for Tandem Solar Cells 75</p> <p>2.10.2 Automatic Roll-to-Roll System for the FIRA Manufacture of Perovskite Solar Cells 77</p> <p>2.10.3 Electronic Setup 78</p> <p>2.10.4 LabView Interface 78</p> <p>2.11 Experimental Methods 80</p> <p>2.11.1 Manufacture of Perovskite Solar Cells 80</p> <p>2.11.2 Perovskite Solution Preparation 80</p> <p>2.11.3 Antisolvent Method 81</p> <p>2.11.4 FIRA Method 81</p> <p>2.11.5 HTM Deposition and Back Contact Evaporation 81</p> <p>2.11.6 Device Characterization 82</p> <p>2.11.7 Material Characterization 82</p> <p>2.11.8 Temperature Measurement 83</p> <p>List of Abbreviations 83</p> <p>Acknowledgments 84</p> <p>References 84</p> <p><b>3 Passivation of Hybrid/Inorganic Perovskite Solar Cells 91<i><br /> </i></b><i>Muhammad Akmal Kamarudin and Shuzi Hayase</i></p> <p>3.1 Introduction 91</p> <p>3.1.1 Types of Passivation 93</p> <p>3.1.1.1 Bulk Passivation 93</p> <p>3.1.1.2 Surface Passivation 93</p> <p>3.1.2 Passivating Materials 95</p> <p>3.1.2.1 Metal Halides 95</p> <p>3.1.2.2 Organic Acids (—COOH, —SOOH, and —POOH) 96</p> <p>3.1.2.3 Organosulfur Compound 98</p> <p>3.1.2.4 Amines 98</p> <p>3.1.2.5 Graphene 100</p> <p>3.1.2.6 Metal Oxides 100</p> <p>3.1.2.7 Organic Halides 102</p> <p>3.1.2.8 Quantum Dots 104</p> <p>3.1.2.9 Polymers 104</p> <p>3.1.2.10 Zwitterions 107</p> <p>3.2 Conclusion 107</p> <p>References 108</p> <p><b>4 Tuning Interfacial Effects in Hybrid Perovskite Solar Cells 113<br /> </b><i>Rafael S. Sánchez, Lionel Hirsch, and Dario M. Bassani</i></p> <p>4.1 Strategies for Interfacial Deposition and Analysis 113</p> <p>4.1.1 Tailoring the PS Properties and Microstructural Interface Through Solvent Engineering 114</p> <p>4.1.2 Tailoring the PS Properties and Microstructural Interface Through Non-solvent Methods 117</p> <p>4.2 Defect Formation in PS Films and Interfaces 118</p> <p>4.2.1 Defect Formation in the PS Bulk and at the Surface During Film Crystallization 119</p> <p>4.2.2 Defect Formation and Dynamics of PSC Under Working Conditions 122</p> <p>4.3 Passivation Strategies of PS 126</p> <p>4.4 Measuring and Tuning the Work Function and Surface Potential in PSC 130</p> <p>4.5 Tuning the Wettability and Compatibility Between Layers 138</p> <p>4.6 Effect on Device Efficiency and Lifetime 142</p> <p>4.6.1 Moisture Effects on PS Films and PSC 142</p> <p>4.6.2 Photoinduced Degradation of PS Films and PSC 146</p> <p>4.6.3 Thermal Degradation of PS Films and PSC 149</p> <p>4.6.4 Other Sources of Degradation in PSC 150</p> <p>4.7 Conclusions and Prospects 153</p> <p>References 154</p> <p><b>5 All-inorganic Perovskite Solar Cells 175<i><br /> </i></b><i>Yaowen Li and Yongfang Li</i></p> <p>5.1 Introduction 175</p> <p>5.2 Basic Knowledge of All-inorganic Pero-SCs 176</p> <p>5.2.1 Crystalline Structure 176</p> <p>5.2.2 Stability 177</p> <p>5.2.2.1 Thermal Stability 177</p> <p>5.2.2.2 Phase Stability 177</p> <p>5.2.2.3 Light Stability 178</p> <p>5.2.3 Working Principle 178</p> <p>5.3 Lead-Based Inorganic Pero-SCs 179</p> <p>5.3.1 CsPbI<sup>3</sup> 179</p> <p>5.3.1.1 Additive Engineering 181</p> <p>5.3.1.2 Organic Compound Treatment 181</p> <p>5.3.1.3 Crystal Size Reduction and Morphology Optimization 183</p> <p>5.3.1.4 Current Density Increase 185</p> <p>5.3.2 CsPbI<sub>2</sub>Br 185</p> <p>5.3.2.1 Fabrication Methods 185</p> <p>5.3.2.2 Ionic Incorporation 189</p> <p>5.3.2.3 Interface Engineering 191</p> <p>5.3.3 CsPbIBr<sub>2</sub> 193</p> <p>5.3.3.1 Crystal Growth 194</p> <p>5.3.3.2 Ionic Incorporation 195</p> <p>5.3.3.3 Interface Engineering 196</p> <p>5.3.4 CsPbBr<sub>3 </sub>196</p> <p>5.3.4.1 Fabrication Method 197</p> <p>5.3.4.2 Ionic Incorporation 199</p> <p>5.3.4.3 Interface Engineering 199</p> <p>5.4 Tin-Based Inorganic Pero-SCs 200</p> <p>5.4.1 CsSnI<sub>3</sub> 200</p> <p>5.4.1.1 Fabrication Methods 201</p> <p>5.4.1.2 Additive Engineering 203</p> <p>5.4.1.3 Substrate Control 203</p> <p>5.4.2 CsSnI<sub>x</sub>Br<sub>3</sub>−x 204</p> <p>5.5 Other Inorganic Pero-SCs 204</p> <p>5.5.1 Ge-Based Inorganic Pero-SCs 205</p> <p>5.5.2 Sb-Based Inorganic Pero-SCs 205</p> <p>5.5.3 Bi-Based Inorganic Pero-SCs 206</p> <p>5.5.3.1 A<sub>3</sub>B<sub>2</sub>I<sub>9</sub> Structure 206</p> <p>5.5.3.2 Other Structures 207</p> <p>5.5.4 Double B site Cation Perovskite 207</p> <p>5.6 Conclusion 209</p> <p>References 210</p> <p><b>6 Tin Halide Perovskite Solar Cells 223<br /> </b><i>Thomas Stergiopoulos</i></p> <p>6.1 Introduction 223</p> <p>6.2 Why Tin Halide Perovskites? 223</p> <p>6.2.1 Tin as the Sole Viable Alternative 223</p> <p>6.2.2 Favorable Optoelectronic Properties of Tin Perovskites 224</p> <p>6.2.2.1 Low Bandgap 224</p> <p>6.2.2.2 High Charge Carrier Mobility 224</p> <p>6.2.2.3 Similar Properties with Lead Perovskites 225</p> <p>6.3 Concerns About Tin-Based Perovskites 225</p> <p>6.3.1 Severe Non-radiative Recombination 225</p> <p>6.3.2 Poor Stability 226</p> <p>6.4 Control of Hole Doping 227</p> <p>6.4.1 Sn<sup>2+</sup> Compensation/Necessity of Adding SnF<sub>2</sub> 227</p> <p>6.4.2 Additives to Improve SnF<sup>2 </sup>Dispersion 227</p> <p>6.4.3 Elimination of Sn<sup>4+</sup> Impurities 229</p> <p>6.4.3.1 SnI<sub>2</sub> Purification 229</p> <p>6.4.3.2 Reaction of Sn Powder with Sn<sup>4+</sup> Residuals 229</p> <p>6.4.3.3 Addition of Reducing Agents 230</p> <p>6.5 Films Deposition 231</p> <p>6.5.1 Crystallization Tuning 231</p> <p>6.5.1.1 Solvent Engineering 231</p> <p>6.5.1.2 Additives to Slow Down Crystallization Kinetics 232</p> <p>6.5.2 Posttreatment Strategies/Surface Trap Passivation 233</p> <p>6.6 Contacts/Interface Engineering 234</p> <p>6.7 Ongoing Challenges 235</p> <p>6.7.1 Efficiency 235</p> <p>6.7.2 Stability 238</p> <p>6.7.3 Performance over the S–Q Limit/Toward Multijunction Solar Cells 238</p> <p>6.7.4 Sustainability 241</p> <p>6.8 Conclusion 241</p> <p>Acknowledgments 242</p> <p>References 242</p> <p><b>7 Low-Temperature and Facile Solution-Processed Two-Dimensional Materials as Electron Transport Layer for Highly Efficient Perovskite Solar Cells 247<br /> </b><i>Shao Hui, Najib H. Ladi, Han Pan, Yan Shen, and Mingkui Wang</i></p> <p>7.1 Introduction 247</p> <p>7.2 Charge Transport in Perovskite Solar Cells 249</p> <p>7.3 Brief Development of Perovskite Solar Cells 251</p> <p>7.4 Functions and Requirements of Electron Transport Layer 253</p> <p>7.5 Features and Advantages of Two-Dimensional Electron Transport Materials 256</p> <p>7.6 Van der Waals Heterojunctions 256</p> <p>7.7 Quantum Confinement Effect in Two-Dimensional Electron Transport Materials and Its<br /> Application 258</p> <p>7.8 Other Physical Properties of Two-Dimensional Electron Transport Materials 259</p> <p>7.9 Synthesis of Various Two-Dimensional Materials 260</p> <p>7.10 Application of Two-Dimensional Material as an Electron Transport Layer in Perovskite Solar Cells 262</p> <p>7.11 Conclusion and Outlook 266</p> <p>List of Abbreviations 267</p> <p>References 268</p> <p><b>8 Metal Oxides in Stable and Flexible Halide Perovskite Solar Cells: Toward Self-Powered Internet of Things 273<br /> </b><i>Carlos Pereyra, Haibing Xie, Amir N. Shandy, Vanessa Martínez, HenckPierre, Elia Santigosa, Daniel A. Acuña-Leal, Laia Capdevila, Quentin Billon,Löis Mergny, María Ramos-Payán, Mónica Gomez, Bindu Krishnan, MariaMuñoz, David M. Tanenbaum, Anders Hagfeldt, and Monica Lira-Cantu</i></p> <p>8.1 Introduction 273</p> <p>8.2 Metal Oxides in Normal (n–i–p), Inverted (p–i–n) and “Oxide-Sandwich” Halide Perovskite Solar Cells 275</p> <p>8.3 Mesoporous Metal Oxide Bilayers in Highly Stable Carbon-Based Perovskite Solar Cells 277</p> <p>8.4 Solution-Processable Metal Oxides for Flexible Halide Perovskite Solar Cells 288</p> <p>8.5 Characterization of PSC by Electrochemical Impedance Spectroscopy (EIS) 294</p> <p>8.6 Conclusions 299</p> <p>Acknowledgments 299</p> <p>References 300</p> <p><b>9 Electron Transport Layers in Perovskite Solar Cells 311<br /> </b><i>Fatemeh Jafari, Mehrad Ahmadpour, Um Kanta Aryal, Mariam Ahmad,Michela Prete, Naeimeh Torabi, Vida Turkovic, Horst-Günter Rubahn, AbbasBehjat, and Morten Madsen</i></p> <p>9.1 Introduction 311</p> <p>9.2 Requirements of Ideal Electron Transport Layers (ETL) 312</p> <p>9.3 Overview of Electron Transport Materials 314</p> <p>9.3.1 Metal Oxide Electron Transport Materials 314</p> <p>9.3.2 Organic Electron Transport Materials 317</p> <p>9.4 The Architectures of Perovskite Solar Cells 321</p> <p>9.4.1 Mesoscopic Perovskite Solar Cells 321</p> <p>9.4.2 Planar Perovskite Solar Cells 323</p> <p>Acknowledgments 324</p> <p>References 324</p> <p><b>10 Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells 331<br /> </b><i>Meenakshi Pegu, Shahzada Ahmad, and Samrana Kazim</i></p> <p>10.1 Introduction 331</p> <p>10.1.1 Device Structure of Perovskite Solar Cells 332</p> <p>10.1.2 Charge Transport in Perovskite Solar Cells and Role of HTM 333</p> <p>10.2 Hole-Transporting Material for Perovskite Solar Cells 334</p> <p>10.2.1 Characteristics of an HTM and Interaction with Perovskite 334</p> <p>10.2.2 Nature of HTM: Organometallic, Inorganic, and Organic (Small Molecules and Polymers) 336</p> <p>10.2.3 Doping of Hole-Transporting Materials in PSCs 337</p> <p>10.3 Dopant-Free Organic HTMs for Perovskite Solar Cells 340</p> <p>10.3.1 Dopant-Free Organic Polymer As HTM 340</p> <p>10.3.2 Dopant-Free Small Molecules as HTM 340</p> <p>10.3.2.1 Triarylamine-Based HTM 340</p> <p>10.3.2.2 Carbazole-Based HTMs 348</p> <p>10.3.2.3 Thiophene-Based HTMs 349</p> <p>10.3.2.4 Acene-Based HTMs 350</p> <p>10.3.2.5 Triazatruxene-Based HTMs 350</p> <p>10.3.2.6 Tetrathiafulvalene-Based HTM 353</p> <p>10.3.2.7 Organometallic Compounds and Other Molecules as HTM 353</p> <p>10.4 Conclusion and Outlook 356</p> <p>Acknowledgments 356</p> <p>List of Abbreviations 356</p> <p>References 359</p> <p><b>11 Impact of Monovalent Metal Halides on the Structural and Photophysical Properties of Halide Perovskite 369 <br /> </b><i>Mojtaba Abdi-Jalebi and M. Ibrahim Dar</i></p> <p>11.1 Introduction 369</p> <p>11.2 Metal Halides 369</p> <p>11.3 Monovalent Metal Halides 370</p> <p>11.4 Impact of Monovalent Metal Halides on the Morphological, Structural and Optoelectronic Properties of Perovskites 372</p> <p>11.5 Impact of Monovalent Metal Halides on Photovoltaic Device Characterizations 378</p> <p>References 384</p> <p><b>12 Charge Carrier Dynamics in Perovskite Solar Cells 389</b><i><br /> Mohd T. Khan, Abdullah Almohammedi, Samrana Kazim, and Shahzada Ahmad</i></p> <p>12.1 Introduction 389</p> <p>12.2 Space Charge-Limited Conduction 390</p> <p>12.3 Immitance Spectroscopy 395</p> <p>12.3.1 Impedance Spectroscopy 395</p> <p>12.3.2 Capacitance Spectroscopy 402</p> <p>12.3.2.1 Capacitance vs. Frequency (C–f ) Measurements 403</p> <p>12.3.2.2 Capacitance vs. Voltage (C–V) Measurements and Mott–Schottky Analysis 406</p> <p>12.3.2.3 Thermal Admittance Spectroscopy 409</p> <p>12.4 Transient Spectroscopy 413</p> <p>12.4.1 Time-Resolved Microwave Conductivity Measurements 413</p> <p>12.4.2 Transient Absorption Spectroscopy 417</p> <p>12.4.3 Time-Resolved Photoluminescence 420</p> <p>12.5 Conclusion 423</p> <p>Acknowledgments 424</p> <p>References 424</p> <p><b>13 Printable Mesoscopic Perovskite Solar Cells 431</b><i><br /> Daiyu Li, Yaoguang Rong, Yue Hu, Anyi Mei, and Hongwei Han</i></p> <p>13.1 Introduction 431</p> <p>13.2 Device Structures and Working Principles 432</p> <p>13.3 Progress of Efficiency and Stability 433</p> <p>13.4 Scaling-up of Printable Mesoscopic Perovskite Solar Cells 438</p> <p>13.4.1 The Structure of Printable Mesoscopic PSC Modules 438</p> <p>13.4.2 Solution Deposition Methods of Printable Mesoscopic PSC Modules 440</p> <p>13.4.3 Encapsulation of Printable Mesoscopic PSCs 442</p> <p>13.4.4 The Recycling of Printable Mesoscopic PSCs 442</p> <p>13.4.5 Mass-Production of Printable Mesoscopic PSC Modules 444</p> <p>13.4.6 Standardizing the Evaluation of PSC Modules 445</p> <p>13.4.7 Standardizing the Aging Measurements of PSC Modules 447</p> <p>13.5 Conclusions 449</p> <p>References 449</p> <p><b>14 Upscaling of Perovskite Photovoltaics 453<br /> </b><i>Dongju Jang, Fu Yang, Lirong Dong, Christoph J. Brabec, and Hans-Joachim Egelhaaf</i></p> <p>14.1 Introduction 453</p> <p>14.2 Techniques for Upscaling 457</p> <p>14.3 State-of-the-art of Large-Area High-Quality Perovskite Devices 467</p> <p>14.4 Strategies of Upscaling of Perovskite Devices 471</p> <p>14.4.1 Strategies for Up-Scaling Perovskite Layers 473</p> <p>14.4.1.1 Physical Methods 473</p> <p>14.4.1.2 Chemical Methods 476</p> <p>14.4.1.3 Post-Growth Treatment 477</p> <p>14.4.2 Scalable Charge Extraction Layers 478</p> <p>14.4.3 Scalable Electrodes 479</p> <p>14.4.3.1 Bottom Electrode 479</p> <p>14.4.3.2 Top Electrode 481</p> <p>14.5 Module Layout 481</p> <p>14.6 Lifetime Aspects 484</p> <p>14.7 Summary and Outlook 486</p> <p>References 489</p> <p><b>15 Scalable Architectures and Fabrication Processes of Perovskite Solar Cell Technology 497<br /> </b><i>Ghufran S. Hashmi</i></p> <p>15.1 Background 497</p> <p>15.1.1 Configurations and Device Architectures of Perovskite Solar Cells 498</p> <p>15.1.2 HTM-Free Device Configurations for Perovskite Solar Cells 499</p> <p>15.1.3 Perovskites-Based Tandem Solar Cells 500</p> <p>15.2 Scalable Device Designs of Perovskite Solar Cells 501</p> <p>15.2.1 Scalable n–i–p Configuration-Based Perovskite Solar Modules 501</p> <p>15.2.2 Scalable p–i–n Configuration-Based Perovskite Solar Modules 504</p> <p>15.2.3 Scalable n–i–p and p–i–n Configuration-Based Flexible Perovskite Solar Modules 504</p> <p>15.2.4 HTM-Free Perovskite Solar Modules 508</p> <p>15.3 Critical Overview on Scalable Materials Deposition Methods 509</p> <p>15.4 Nutshell of Long-Term Device Stability of Perovskite Solar Cells and Modules 513</p> <p>15.5 Conclusive Summary and Futuristic Outlook 514</p> <p>References 515</p> <p><b>16 Multi-Junction Perovskite Solar Cells 521</b><i><br /> Suhas Mahesh and Bernard Wenger</i></p> <p>16.1 Introduction 521</p> <p>16.1.1 How Efficient Can Solar Cells Be? 523</p> <p>16.1.2 How Do Multi-Junction Solar Cells Work? 525</p> <p>16.1.3 Multi-Junction: Two-Terminal, Three-Terminal, and Four-Terminal Multi-Junctions 525</p> <p>16.1.4 Why Perovskites for Multi-Junctions? 528</p> <p>16.2 Perovskite-Silicon Tandems 529</p> <p>16.2.1 Bandgap Engineering 530</p> <p>16.2.2 Parasitic Absorption 532</p> <p>16.2.3 Optical Management 535</p> <p>16.3 Perovskite–Perovskite Tandems 536</p> <p>16.4 Characterizing Tandems 538</p> <p>16.5 Commercialization 539</p> <p>16.5.1 Reliability 540</p> <p>16.5.2 Scalability 540</p> <p>16.5.3 Cost 541</p> <p>16.6 Outlook 542</p> <p>References 543</p> <p>Index 549</p>
Shahzada Ahmad is Professor at the Basque Center for Materials Applications & Nanostructures (BCMaterials). Prior to his current position, Dr. Ahmad has worked as program director at Abengoa Research. After his PhD in the field of materials chemistry he was an Alexander von Humboldt Fellow at the Max Planck Institute for Polymer Research, Mainz, Germany, and worked on surface and interface studies. Dr. Ahmad is a prolific author and has authored more than 100 publications in the fields of physical chemistry, nanotechnology and materials science with a research mission to develop advanced materials for energy application.<br> <br> Samrana Kazim is senior researcher at the Basque Center for Materials Applications & Nanostructures (BCMaterials). After her PhD, she moved to the Institute of Macromolecular Chemistry, Prague, Czech Republic, on a IUPAC/UNESCO fellowship. Before joining BCMaterials, she worked as senior scientist at Abengoa Research for four years. Her field of research interest includes perovskite solar cells, plasmonics, hybrid inorganic-organic nanocomposites. She has authored 40 research articles in peer-reviewed international journals, has co-authored two book chapters and is co-inventor of five patents.<br> <br> Michael Grätzel is Professor of Physical Chemistry at the Ecole Polytechnique Fédérale de Lausanne, Switzerland, and directs the Laboratory of Photonics and Interfaces. He pioneered research in the field of energy and electron transfer reactions in mesoscopic systems and their use in energy conversion systems. With an h factor of 218, Michael Grätzel is one of the three most highly cited chemists in the world. His recent awards include the RUSNANO Prize, an honorary doctorate of the Ecole Nationale Supérieure de Paris-Cachan, the Global Energy Prize, the Zewail Prize and Medal, and the Centenary Prize of the Royal Society of Chemistry (UK). He is a member of the Swiss Chemical Society and an elected member of the German Academy of Science (Leopoldina) as well as Honorary member of the Israeli Chemical Society, the Bulgarian Academy of Science and the Société Vaudoise de Sciences Naturelles.<br>

Diese Produkte könnten Sie auch interessieren:

Perovskite Photovoltaics and Optoelectronics
Perovskite Photovoltaics and Optoelectronics
von: Tsutomu Miyasaka
PDF ebook
153,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €