Details

DNA- and RNA-Based Computing Systems


DNA- and RNA-Based Computing Systems


1. Aufl.

von: Evgeny Katz

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 31.12.2020
ISBN/EAN: 9783527825417
Sprache: englisch
Anzahl Seiten: 408

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Discover the science of biocomputing with this comprehensive and forward-looking new resource</b></p> <p><i>DNA- and RNA-Based Computing Systems</i> delivers an authoritative overview of DNA- and RNA-based biocomputing systems that touches on cutting-edge advancements in computer science, biotechnology, nanotechnology, and materials science. Accomplished researcher, academic, and author Evgeny Katz offers readers an examination of the intersection of computational, chemical, materials, and engineering aspects of biomolecular information processing.</p> <p>A perfect companion to the recently published <i>Enzyme-Based Computing</i> by the same editor, the book is an authoritative reference for those who hope to better understand DNA- and RNA-based logic gates, multi-component logic networks, combinatorial calculators, and related computational systems that have recently been developed for use in biocomputing devices.</p> <p><i>DNA- and RNA-Based Computing Systems</i> summarizes the latest research efforts in this rapidly evolving field and points to possible future research foci. Along with an examination of potential applications in biosensing and bioactuation, particularly in the field of biomedicine, the book also includes topics like:</p> <ul> <li>A thorough introduction to the fields of DNA and RNA computing, including DNA/enzyme circuits</li> <li>A description of DNA logic gates, switches and circuits,  and how to program them</li> <li>An introduction to photonic logic using DNA and RNA</li> <li>The development and applications of DNA computing for use in databases and robotics </li> </ul> <p>Perfect for biochemists, biotechnologists, materials scientists, and bioengineers, <i>DNA- and RNA-Based Computing Systems</i> also belongs on the bookshelves of computer technologists and electrical engineers who seek to improve their understanding of biomolecular information processing. Senior undergraduate students and graduate students in biochemistry, materials science, and computer science will also benefit from this book.</p>
<p>Preface xiii</p> <p><b>1 DNA Computing: Origination,Motivation, and Goals -- Illustrated Introduction 1</b><br /><i>Evgeny Katz</i></p> <p>1.1 Motivation and Applications 1</p> <p>1.2 DNA- and RNA-Based Biocomputing Systems in Progress 3</p> <p>1.3 DNA-Based Information Storage Systems 8</p> <p>1.4 Short Conclusions and Comments on the Book 10</p> <p><b>2 DNA Computing: Methodologies and Challenges 15</b><br /><i>Deepak Sharma and Manojkumar Ramteke</i></p> <p>2.1 Introduction to DNA Computing Methodologies 15</p> <p>2.2 Key Developments in DNA Computing 16</p> <p>2.3 Challenges 26</p> <p><b>3 DNA Computing and Circuits 31</b><br /><i>Chuan Zhang</i></p> <p>3.1 FromTheory to DNA Implementations 31</p> <p>3.2 Application-Specific DNA Circuits 35</p> <p><b>4 Connecting DNA Logic Gates in Computational Circuits 45</b><br /><i>Dmitry M. Kolpashchikov and Aresenij J. Kalnin</i></p> <p>4.1 DNA Logic Gates in the Context of Molecular Computation 45</p> <p>4.2 Connecting Deoxyribozyme Logic Gates 46</p> <p>4.3 Connecting Gates Based on DNA Strand Displacement 47</p> <p>4.4 Logic Gates Connected Via DNA Four-Way Junction (4WJ) 50</p> <p>4.5 Conclusion 53</p> <p><b>5 Development of Logic Gate Nanodevices from Fluorogenic RNA Aptamers 57</b><br /><i>Trinity Jackson, Rachel Fitzgerald, Daniel K.Miller, and Emil F. Khisamutdinov</i></p> <p>5.1 Nucleic Acid: The Material of Choice for Nanotechnology 57</p> <p>5.2 RNA Aptamers are Modular and Programmable Biosensing Units 58</p> <p>5.3 Construction of RNA Nanoparticles with Integrated Logic Gate Operations Using Light-Up Aptamers 64</p> <p>5.4 Conclusion 70</p> <p><b>6 ProgrammingMolecular Circuitry and Intracellular Computing with Framework Nucleic Acids 77</b><br /><i>Jiang Li and Chunhai Fan</i></p> <p>6.1 Framework Nucleic Acids 77</p> <p>6.2 A Toolbox for Biomolecular Engineering of Living Systems 80</p> <p>6.3 Targeted Applications 85</p> <p>6.4 Nucleic Acid Nanotechnology-Enabled Computing Kernel 86</p> <p>6.5 I/O and Human-Computer Interfacing 89</p> <p>6.6 Information Storage 90</p> <p>6.7 Perspectives 91</p> <p>6.8 Conclusion 95</p> <p>6.8.1 Terminology 96</p> <p><b>7 Engineering DNA Switches for DNA Computing Applications 105</b><br /><i>Dominic Lauzon, Guichi Zhu, and Alexis Vallée-Bélisle</i></p> <p>7.1 Introduction 105</p> <p>7.2 Selecting Recognition Element Based on Input 107</p> <p>7.3 Engineering Switching Mechanisms 108</p> <p>7.4 Engineering Logic Output Function Response 116</p> <p>7.5 Optimizing Switch Response 117</p> <p>7.6 Perspective 120</p> <p><b>8 Fluorescent Signal Design in DNA Logic Circuits 125</b><br /><i>Dan Huang, Shu Yang, and Qianfan Yang</i></p> <p>8.1 Basic Signal Generation Strategies Based on DNA Structures 126</p> <p>8.2 Designs for Constructing Multi-output Signals 138</p> <p>8.3 Summary and Outlook 147</p> <p><b>9 Nontraditional Luminescent and Quenching Materials for Nucleic Acid-Based Molecular Photonic Logic 155</b><br /><i>Rehan Higgins,Melissa Massey, andW. Russ Algar</i></p> <p>9.1 Introduction 155</p> <p>9.2 DNA Molecular Photonic Logic Gates 156</p> <p>9.3 Nontraditional Luminescent Materials 158</p> <p>9.4 Semiconductor "Quantum Dot" Nanocrystals 159</p> <p>9.5 Lanthanide-Based Materials 161</p> <p>9.6 Gold Nanoparticles 166</p> <p>9.7 Metal Nanoclusters 169</p> <p>9.8 Carbon Nanomaterials 171</p> <p>9.9 Conjugated Polymers 175</p> <p>9.10 Conclusions and Perspective 177</p> <p><b>10 Programming Spatiotemporal Patterns with DNA-Based Circuits 185</b><br /><i>Marc Van Der Hofstadt, Guillaume Gines, Jean-Christophe Galas, and André Estevez-Torres</i></p> <p>10.1 Introduction 185</p> <p>10.2 Experimental Implementation of DNA Analog Circuits 188</p> <p>10.3 Time-Dependent Spatial Patterns 193</p> <p>10.4 Steady-State Spatial Patterns 202</p> <p>10.5 Conclusion and Perspectives 206</p> <p><b>11 ComputingWithout Computing: DNA Version 213</b><br /><i>Vladik Kreinovich and Julio C. Urenda</i></p> <p>11.1 Introduction 213</p> <p>11.2 ComputingWithout Computing -- Quantum Version: A Brief Reminder 214</p> <p>11.3 ComputingWithout Computing -- Version Involving Acausal Processes: A Reminder 215</p> <p>11.4 ComputingWithout Computing -- DNA Version 217</p> <p>11.5 DNA ComputingWithout Computing Is Somewhat Less Powerful than Traditional DNA Computing: A Proof 222</p> <p>11.6 First Related Result: Security Is More Difficult to Achieve than Privacy 224</p> <p>11.7 Second Related Result: Data Storage Is More Difficult than Data Transmission 226</p> <p><b>12 DNA Computing: Versatile Logic Circuits and Innovative Bio-applications 231</b><br /><i>Daoqing Fan, ErkangWang, and Shaojun Dong</i></p> <p>12.1 Definition, Logical Principle, and Classification of DNA Computing 231</p> <p>12.2 Advanced Arithmetic DNA Logic Devices 232</p> <p>12.3 Advanced Non-arithmetic DNA Logic Devices 235</p> <p>12.4 Concatenated Logic Circuits 239</p> <p>12.5 InnovativeMultifunctional DNA Logic Library 241</p> <p>12.6 Intelligent Bio-applications 241</p> <p>12.7 Prospects 244</p> <p><b>13 Nucleic Acid-Based Computing in Living Cells Using Strand Displacement Processes 247</b><br /><i>Lukas Oesinghaus and Friedrich C. Simmel</i></p> <p>13.1 Nucleic Acid Strand Displacement 247</p> <p>13.2 Synthetic Riboregulators 251</p> <p>13.3 Combining Strand Displacement and CRISPR Mechanisms 255</p> <p>13.4 Computing Via Nucleic Acid Strand Displacement in Mammalian Cells 258</p> <p>13.5 Outlook 260</p> <p><b>14 Strand Displacement in DNA-Based Nanodevices and Logic 265</b><br /><i>Antoine Bader and Scott L. Cockroft</i></p> <p>14.1 An Introduction to Strand Displacement Reactions 265</p> <p>14.2 Dynamic Reconfiguration of Structural Devices 268</p> <p>14.3 Stepped and Autonomous DNAWalkers 271</p> <p>14.4 Early Breakthroughs in DNA Computing 274</p> <p>14.5 DNA-Based Molecular Logic 279</p> <p>14.6 Future Prospects for Strand Displacement-Based Devices 286</p> <p><b>15 Development and Application of Catalytic DNA in Nanoscale Robotics 293</b><br /><i>David Arredondo, Matthew R. Lakin, Darko Stefanovic, andMilan N. Stojanovic</i></p> <p>15.1 Introduction 293</p> <p>15.2 Brief History of DNAzymes 293</p> <p>15.3 Experimental Implementations 296</p> <p>15.4 DNAzymeWalkers 298</p> <p>15.5 StatisticalMechanics and Simulation 300</p> <p>15.6 Conclusions 302</p> <p><b>16 DNA Origami Transformers 307</b><br /><i>Reem Mokhtar, Tianqi Song, Daniel Fu, Shalin Shah, Xin Song,Ming Yang, and John Reif</i></p> <p>16.1 Introduction 307</p> <p>16.2 Design 312</p> <p>16.3 Experimental Demonstrations 316</p> <p>16.4 Applications 318</p> <p>16.5 Conclusion 322</p> <p><b>17 Nanopore Decoding for DNA Computing 327</b><br /><i>Hiroki Yasuga, Kan Shoji, and Ryuji Kawano</i></p> <p>17.1 Introduction 327</p> <p>17.2 Application of Nanopore Technology for Rapid and Label-Free Decoding 330</p> <p>17.3 Application of Nanopore Decoding in Medical Diagnosis 335</p> <p>17.4 Conclusions 339</p> <p><b>18 An Overview of DNA-Based Digital Data Storage 345</b><br /><i>Xin Song, Shalin Shah, and John Reif</i></p> <p>18.1 Introduction 345</p> <p>18.2 Components of a DNA Storage System 346</p> <p>18.3 Conclusions and Outlook 350</p> <p><b>19 Interfacing Enzyme-Based and DNA-Based Computing Systems: FromSimple Boolean Logic to Sophisticated Reversible Logic Systems 353</b><br /><i>Evgeny Katz</i></p> <p>19.1 Interfacing Enzyme-Based and DNA-Based Computing Systems is a Challenging Goal: Motivations and Approaches 353</p> <p>19.2 Bioelectronic Interface Transducing Logically Processed Signals from an Enzymatic System to a DNA System 354</p> <p>19.3 The Bioelectronic Interface Connecting Enzyme-Based Reversible Logic Gates and DNA-Based Reversible Logic Gates: Realization in a Flow Device 362</p> <p>19.4 Enzyme-Based Fredkin Gate Processing Biomolecular Signals Prior to the Bioelectronic Interface 363</p> <p>19.5 Reversible DNA-Based Feynman Gate Activated by Signals Produced by the Enzyme-Based Fredkin Gate 368</p> <p>19.6 Conclusions and Perspectives 371</p> <p>19.A Appendix 373</p> <p>19.A.1 Oligonucleotides Used in the System Mimicking Feynman Gate 373</p> <p>References 374</p> <p><b>20 Conclusions and Perspectives: Further Research Directions and Possible Applications 379</b><br /><i>Evgeny Katz</i></p> <p>Index 383</p>
<p><b>Evgeny Katz</b> received his Ph.D. in Chemistry from Frumkin Institute of Electrochemistry (Moscow), Russian Academy of Sciences, in 1983. He was a senior researcher in the Institute of Photosynthesis (Pushchino), Russian Academy of Sciences, in 1983-1991. In 1992-1993 he performed research at München Technische Universität (Germany) as a Humboldt fellow. Later, in 1993-2006, Dr. Katz was a Research Associate Professor at the Hebrew University of Jerusalem. Since 2006 he is Milton Kerker Chaired Professor at the Department of Chemistry and Biomolecular Science, Clarkson University, NY (USA). His scientific interests are in the broad areas of bioelectronics, biosensors, biofuel cells, and biomolecular information processing.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €