Details

Organofluorine Chemistry


Organofluorine Chemistry

Synthesis, Modeling, and Applications
1. Aufl.

von: Kalman J. Szabo, Nicklas Selander

142,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 17.12.2020
ISBN/EAN: 9783527825134
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

By presenting novel methods for the efficient preparation of fluorinated compounds and their application in pharmaceutical and agrochemical chemistry as well as medicine, this is a valuable source of information for all researchers in academia and industry!
<p>Preface xiii</p> <p><b>1 The Development of New Reagents and Reactions for Synthetic Organofluorine Chemistry by Understanding the Unique Fluorine Effects </b><b>1<br /></b><i>Qiqiang Xie and Jinbo Hu</i></p> <p>1.1 Introduction 1</p> <p>1.2 The Unique Fluorine Effects in Organic Reactions 3</p> <p>1.2.1 Fluorine-Enabled Stability of “CuCF3” inWater, and the Unusual Water-Promoted Trifluoromethylation 3</p> <p>1.2.2 Fluorine Enables β-Fluoride Elimination of Organocopper Species 4</p> <p>1.2.3 The “Negative Fluorine Effect” Facilitates the α-Elimination of Fluorocarbanions to Generate Difluorocarbene Species 5</p> <p>1.2.4 Tackling the β-Fluoride Elimination of Trifluoromethoxide Anion via a Fluoride Ion-Mediated Process 9</p> <p>1.3 The Relationships Among Fluoroalkylation, Fluoroolefination, and Fluorination 9</p> <p>1.3.1 From Fluoroalkylation to Fluoroolefination 9</p> <p>1.3.2 From Fluoroolefination to Fluoroalkylation 13</p> <p>1.3.3 From Fluoroalkylation to Fluorination 18</p> <p>1.4 Conclusions 20</p> <p>References 20</p> <p><b>2 Perfluoroalkylation Using Perfluorocarboxylic Acids and Anhydrides </b><b>23<br /></b><i>Shintaro Kawamura and Mikiko Sodeoka</i></p> <p>2.1 Introduction 23</p> <p>2.2 Perfluoroalkylation with Perfluorocarboxylic Acids 23</p> <p>2.2.1 Electrochemical Reactions 24</p> <p>2.2.1.1 Reactions of Alkenes and Alkynes 24</p> <p>2.2.1.2 Reaction of Aromatic Compounds 30</p> <p>2.2.2 Reactions Using XeF<sub>2</sub> 30</p> <p>2.2.3 Reactions Using Copper and Silver Salts 31</p> <p>2.2.3.1 Using Copper Salts 31</p> <p>2.2.3.2 Using Silver Salts 35</p> <p>2.2.4 Photochemical Reactions 36</p> <p>2.2.5 Other Methods 38</p> <p>2.2.5.1 Hydro-Trifluoromethylation of Fullerene 38</p> <p>2.2.5.2 Metal-Free Aryldifluoromethylation Using S<sub>2</sub>O<sub>8</sub> <sup>2−</sup> 39</p> <p>2.3 Perfluoroalkylation with Perfluorocarboxylic Anhydride 39</p> <p>2.3.1 Reactions Using Perfluorocarboxylic Anhydride/Urea⋅H<sub>2</sub>O<sub>2</sub> 40</p> <p>2.3.2 Photocatalytic Reactions Using Perfluorocarboxylic Anhydride/Pyridine <i>N</i>-oxide 42</p> <p>2.4 Summary and Prospects 43</p> <p>References 43</p> <p><b>3 Chemistry of OCF<sub>3</sub>, SCF<sub>3</sub>, and SeCF<sub>3</sub> Functional Groups </b><b>49<br /></b><i>Fabien Toulgoat, François Liger and Thierry Billard</i></p> <p>3.1 Introduction 49</p> <p>3.2 CF<sub>3</sub>O Chemistry 49</p> <p>3.2.1 De Novo Construction 49</p> <p>3.2.1.1 Trifluorination of Alcohol Derivatives 49</p> <p>3.2.1.2 Fluorination of Difluorinated Compounds 50</p> <p>3.2.2 Indirect Methods 51</p> <p>3.2.2.1 <i>O</i>-(Trifluoromethyl)dibenzofuranium Salts 51</p> <p>3.2.2.2 Hypervalent Iodine Trifluoromethylation Reagents 51</p> <p>3.2.2.3 CF<sub>3</sub>SiMe<sub>3</sub> 51</p> <p>3.2.3 Direct Trifluoromethoxylation 52</p> <p>3.2.3.1 Difluorophosgene and Derivatives 53</p> <p>3.2.3.2 Trifluoromethyl Hypofluorite and Derivatives 53</p> <p>3.2.3.3 Trifluoromethyl Triflate (TFMT) 53</p> <p>3.2.3.4 Trifluoromethoxide Salts Derived from TFMT or Difluorophosgene 55</p> <p>3.2.3.5 Trifluoromethyl Arylsulfonates (TFMSs) 57</p> <p>3.2.3.6 Trifluoromethylbenzoate (TFBz) 60</p> <p>3.2.3.7 2,4-Dinitro(trifluoromethoxy)benzene (DNTFB) 60</p> <p>3.2.3.8 (Triphenylphosphonio)difluoroacetate (PDFA) 61</p> <p>3.2.3.9 <i>N</i>-Trifluoromethoxylated Reagents 62</p> <p>3.3 CF<sub>3</sub>S Chemistry 63</p> <p>3.3.1 Indirect Methods 63</p> <p>3.3.2 Direct Trifluoromethylthiolation 64</p> <p>3.3.2.1 CF<sub>3</sub>SAg, CF<sub>3</sub>SCu, CF<sub>3</sub>SNR<sub>4</sub> 65</p> <p>3.3.2.2 Trifluoromethanesulfenamides 65</p> <p>3.3.2.3 <i>N</i>-Trifluoromethylthiophthalimide 66</p> <p>3.3.2.4 <i>N</i>-Trifluoromethylthiosaccharin 67</p> <p>3.3.2.5 <i>N</i>-Trifluoromethylthiobis(phenylsulfonyl)amide 68</p> <p>3.4 CF<sub>3</sub>Se Chemistry 69</p> <p>3.4.1 Introduction 69</p> <p>3.4.2 Indirect Synthesis of CF<sub>3</sub>Se Moiety 70</p> <p>3.4.2.1 Ruppert–Prakash Reagent (CF<sub>3</sub>SiMe<sub>3</sub>) 71</p> <p>3.4.2.2 Fluoroform (HCF<sub>3</sub>) 72</p> <p>3.4.2.3 Other Reagents Involved in CF<sub>3</sub> <sup>−</sup> Anion Generation 73</p> <p>3.4.2.4 Sodium Trifluoromethylsulfinate (CF<sub>3</sub>SO<sub>2</sub>Na) 73</p> <p>3.4.3 Direct Introduction of the CF<sub>3</sub>Se Moiety 74</p> <p>3.4.3.1 Trifluoromethyl Selenocopper DMF Complex 74</p> <p>3.4.3.2 Trifluoromethyl Selenocopper Bipyridine Complex: [bpyCuSeCF<sub>3</sub>]<sub>2</sub> 75</p> <p>3.4.3.3 Tetramethylammonium Trifluoromethylselenolate [(NMe<sub>4</sub>)(SeCF<sub>3</sub>)] 76</p> <p>3.4.3.4 <i>In Situ </i>Generation of CF<sub>3</sub>Se− Anion from Elemental Selenium 79</p> <p>3.4.3.5 Trifluoromethylselenyl Chloride (CF<sub>3</sub>SeCl) 80</p> <p>3.4.3.6 Benzyltrifluoromethylselenide (CF<sub>3</sub>SeBn) 81</p> <p>3.4.3.7 Trifluoromethylselenotoluenesulfonate (CF<sub>3</sub>SeTs) 83</p> <p>3.4.3.8 Benzylthiazolium Salt BT-SeCF<sub>3</sub> 85</p> <p>3.5 Summary and Conclusions 85</p> <p>References 86</p> <p><b>4 Introduction of Trifluoromethylthio Group into Organic Molecules </b><b>99<br /></b><i>Hangming Ge, He Liu and Qilong Shen</i></p> <p>4.1 Introduction 99</p> <p>4.2 Nucleophilic Trifluoromethylthiolation 99</p> <p>4.2.1 Preparation of Nucleophilic Trifluoromethylthiolating Reagent 99</p> <p>4.2.1.1 Preparation of Hg(SCF<sub>3</sub>)<sub>2</sub>, AgSCF<sub>3</sub>, and CuSCF<sub>3</sub> 99</p> <p>4.2.1.2 Preparation of MSCF<sub>3</sub> (M = K, Cs, Me<sub>4</sub>N, and S(NMe<sub>2</sub>)<sub>3</sub>) 100</p> <p>4.2.1.3 Preparation of Stable Trifluoromethylthiolated Copper(I) Complexes 100</p> <p>4.2.2 Formation of C(sp<sup>2</sup>)-SCF<sub>3</sub> by Nucleophilic Trifluoromethylthiolating Reagents 101</p> <p>4.2.2.1 Reaction of CuSCF<sub>3</sub> with Aryl Halides 101</p> <p>4.2.2.2 Sandmeyer-Type Trifluoromethylthiolation 102</p> <p>4.2.2.3 Transition Metal-Catalyzed Trifluoromethylthiolation 103</p> <p>4.2.2.4 Oxidative Trifluoromethylthiolation 107</p> <p>4.2.2.5 Transition Metal-Catalyzed Trifluoromethylthiolation of Arenes via C–H Activation 108</p> <p>4.2.2.6 Miscellaneous Methods for the Formation or Aryl Trifluoromethylthioethers via Nucleophilic Trifluoromethylthiolating Reagents 110</p> <p>4.2.3 Formation of C(sp<sup>3</sup>)-SCF<sub>3</sub> by Nucleophilic Trifluoromethylthiolating Reagents 112</p> <p>4.2.3.1 Reaction of CuSCF<sub>3</sub> with Activated Alkylated Halides 112</p> <p>4.2.3.2 Reaction of MSCF<sub>3</sub> with Unactivated Alkyl Halides 114</p> <p>4.2.3.3 Nucleophilic Dehydroxytrifluoromethylthiolation of Alcohols 114</p> <p>4.2.3.4 Nucleophilic Trifluoromethylthiolation of Alcohol Derivatives 116</p> <p>4.2.3.5 Nucleophilic Trifluoromethylthiolation of α-Diazoesters 116</p> <p>4.2.3.6 Formation or Alkyl Trifluoromethylthioethers via <i>In Situ </i>Generated Nucleophilic Trifluoromethylthiolating Reagent 118</p> <p>4.2.3.7 Formation of Alkyl Trifluoromethylthioethers via C—H Bond Trifluoromethylthiolation 120</p> <p>4.3 Electrophilic Trifluoromethylthiolating Reagents 120</p> <p>4.3.1 CF<sub>3</sub>SCl 120</p> <p>4.3.2 CF<sub>3</sub>SSCF<sub>3</sub> 121</p> <p>4.3.3 Haas Reagent 121</p> <p>4.3.4 Munavalli Reagent 123</p> <p>4.3.5 Billard Reagent 128</p> <p>4.3.6 Shen Reagent 131</p> <p>4.3.7 Shen Reagent-II 136</p> <p>4.3.8 Optically Active Pure Trifluoromethylthiolation Reagents 140</p> <p>4.3.9 Lu–Shen Reagent 141</p> <p>4.3.10 α-Cumyl Bromodifluoromethanesulfenate 144</p> <p>4.3.11 Shibata Reagent 145</p> <p>4.3.12 <i>In Situ</i>-Generated Electrophilic Trifluoromethylthiolating Reagents 146</p> <p>4.3.12.1 AgSCF<sub>3</sub> +TCCA 146</p> <p>4.3.12.2 AgSCF<sub>3</sub> +NCS 148</p> <p>4.3.12.3 Langlois Reagent (CF<sub>3</sub>SO<sub>2</sub>Na) with Phosphorus Reductants 148</p> <p>4.3.12.4 Use of CF<sub>3</sub>SO<sub>2</sub>Cl with Phosphorus Reductants 149</p> <p>4.3.12.5 Reagent Based on CF<sub>3</sub>SOCl and Phosphorus Reductants 151</p> <p>4.4 Radical Trifluoromethylthiolation 151</p> <p>4.4.1 Trifluoromethylthiolation by AgSCF<sub>3</sub>/S<sub>2</sub>O<sub>8</sub> <sup>2−</sup> 152</p> <p>4.4.2 Electrophilic Reagents Involved in Radical Trifluoromethylthiolation 158</p> <p>4.4.3 Visible Light-Promoted Trifluoromethylthiolation by Using Electrophilic Reagents 159</p> <p>4.5 Summary and Prospect 165</p> <p>References 165</p> <p><b>5 Bifunctionalization-Based Catalytic Fluorination and Trifluoromethylation </b><b>173<br /></b><i>Pinhong Chen and Guosheng Liu</i></p> <p>5.1 Introduction 173</p> <p>5.2 Palladium-Catalyzed Fluorination, Trifluoromethylation, and Trifluoromethoxylation of Alkenes 173</p> <p>5.2.1 Palladium-Catalyzed Fluorination of Alkenes 174</p> <p>5.2.2 Palladium-Catalyzed Trifluoromethylation of Alkenes 179</p> <p>5.2.3 Palladium-Catalyzed Trifluoromethoxylation of Alkenes 180</p> <p>5.3 Copper-Catalyzed Trifluoromethylative Functionalization of Alkenes 183</p> <p>5.3.1 Copper-Catalyzed Trifluoromethylamination of Alkenes 184</p> <p>5.3.2 Copper-Catalyzed Trifluoromethyloxygenation of Alkenes 185</p> <p>5.3.3 Copper-Catalyzed Trifluoromethylcarbonation of Alkenes 187</p> <p>5.3.4 Enantioselective Copper-Catalyzed Trifluoromethylation of Alkenes 190</p> <p>5.4 Summary and Conclusions 197</p> <p>References 197</p> <p><b>6 Fluorination, Trifluoromethylation, and Trifluoromethylthiolation of Alkenes, Cyclopropanes, and Diazo Compounds </b><b>201<br /></b><i>Kálmán J. Szabó</i></p> <p>6.1 Introduction 201</p> <p>6.2 Fluorination of Alkenes, Cyclopropanes, and Diazocarbonyl Compounds 202</p> <p>6.2.1 Application of Fluoro-Benziodoxole for Fluorination of Alkenes 202</p> <p>6.2.1.1 Geminal Difluorination of Styrene Derivatives 203</p> <p>6.2.1.2 Iodofluorination of Alkenes 205</p> <p>6.2.1.3 Fluorocyclization with C—N, C—O, and C—C Bond Formation 205</p> <p>6.2.2 Fluorinative Cyclopropane Opening 207</p> <p>6.2.3 Fluorine-18 Labeling with Fluorobenziodoxole 207</p> <p>6.3 Fluorination-Based Bifunctionalization of Diazocarbonyl Compounds 209</p> <p>6.3.1 Rhodium-Catalyzed Geminal Oxyfluorination Reactions 209</p> <p>6.3.2 [<sup>18</sup>F]Fluorobenziodoxole for Synthesis of α-Fluoro Ethers 210</p> <p>6.4 Trifluoromethylation of Alkenes, Alkynes, and Diazocarbonyl Compounds with the Togni Reagent 212</p> <p>6.4.1 Bifunctionalization of C—C Multiple Bonds 213</p> <p>6.4.1.1 Oxytrifluoromethylation of Alkenes and Alkynes 213</p> <p>6.4.1.2 Cyanotrifluoromethylation of Styrenes 214</p> <p>6.4.1.3 C–H Trifluoromethylation of Benzoquinone Derivatives 215</p> <p>6.4.2 Geminal Oxytrifluoromethylation of Diazocarbonyl Compounds 217</p> <p>6.5 Bifunctionalization-Based Trifluoromethylthiolation of Diazocarbonyl Compounds 218</p> <p>6.5.1 Multicomponent Approach for Geminal Oxy-Trifluormethylthiolation 218</p> <p>6.5.2 Simultaneous Formation of C—C and C—SCF<sub>3</sub> Bonds via Hooz-Type Reaction 219</p> <p>6.6 Summary 220</p> <p>References 221</p> <p><b>7 Photoredox Catalysis in Fluorination and Trifluoromethylation Reactions </b><b>225<br /></b><i>Takashi Koike and Munetaka Akita</i></p> <p>7.1 Introduction 225</p> <p>7.2 Fluorination 226</p> <p>7.2.1 Fluorination Through Direct HAT Process by Excited Photocatalyst 226</p> <p>7.2.2 Fluorination Through Photoredox Processes 228</p> <p>7.3 Trifluoromethylation 234</p> <p>7.3.1 Trifluoromethylation of Aromatic Compounds 234</p> <p>7.3.2 Trifluoromethylative Substitution of Alkyl Bromides 238</p> <p>7.4 Summary and Outlook 239</p> <p>References 239</p> <p><b>8 Asymmetric Fluorination Reactions </b><b>241<br /></b><i>Edward Miller and F. Dean Toste</i></p> <p>8.1 Introduction 241</p> <p>8.2 Electrophilic Fluorination 242</p> <p>8.2.1 Stoichiometric Asymmetric Fluorination 242</p> <p>8.2.1.1 Chiral Auxiliary 242</p> <p>8.2.1.2 Chiral Reagents 243</p> <p>8.2.2 Catalytic Electrophilic Fluorination 244</p> <p>8.2.2.1 Organocatalytic Fluorination 244</p> <p>8.2.2.2 Transition Metal-Catalyzed Fluorinations 259</p> <p>8.3 Nucleophilic Fluorination 269</p> <p>8.3.1 Metal-Catalyzed Nucleophilic Fluorination 270</p> <p>8.3.1.1 Ring Opening of Strained Ring Systems 270</p> <p>8.3.1.2 Allylic Functionalization 272</p> <p>8.3.2 Organocatalytic Nucleophilic Fluorination 273</p> <p>8.4 Summary and Conclusions 274</p> <p>References 276</p> <p><b>9 The Self-Disproportionation of Enantiomers (SDE): Fluorine as an SDE-Phoric Substituent </b><b>281<br /></b><i>Jianlin Han, Santos Fustero, Hiroki Moriwaki, Alicja Wzorek, Vadim A. Soloshonok and Karel D. Klika</i></p> <p>9.1 Introduction 281</p> <p>9.2 General Concepts and the Role of Fluorine in the Manifestation of the SDE 283</p> <p>9.3 The SDE Phenomenon 285</p> <p>9.3.1 SDE via Distillation 285</p> <p>9.3.2 SDE via Sublimation 286</p> <p>9.3.3 SDE via Chromatography 288</p> <p>9.3.3.1 SDEvC for Compounds Containing a –CF<sub>3</sub> Moiety 289</p> <p>9.3.3.2 SDEvC for Compounds Containing a C<sub>q</sub>–F<sub>1/2</sub> Moiety 290</p> <p>9.3.3.3 SDEvC for Compounds Containing a –COCF<sub>3</sub> Moiety 291</p> <p>9.4 The SIDA Phenomenon 294</p> <p>9.5 Conclusions and Recommendations 296</p> <p>References 299</p> <p><b>10 DFT Modeling of Catalytic Fluorination Reactions: Mechanisms, Reactivities, and Selectivities </b><b>307<br /></b><i>Yueqian Sang, Biying Zhou, Meng-Meng Zheng, Xiao-Song Xue and Jin-Pei Cheng</i></p> <p>10.1 Introduction 307</p> <p>10.2 DFT Modeling of Transition Metal-Catalyzed Fluorination Reactions 308</p> <p>10.2.1 Ti-Catalyzed Fluorination Reaction 308</p> <p>10.2.2 Mn-Catalyzed Fluorination Reactions 309</p> <p>10.2.3 Fe-Catalyzed Fluorination Reactions 310</p> <p>10.2.4 Rh-Catalyzed Fluorination Reactions 312</p> <p>10.2.5 Ir-Catalyzed Fluorination Reactions 316</p> <p>10.2.6 Pd-Catalyzed Fluorination Reactions 317</p> <p>10.2.6.1 Pd-Catalyzed Nucleophilic Fluorination 317</p> <p>10.2.6.2 Pd-Catalyzed Electrophilic Fluorination 322</p> <p>10.2.7 Cu-Catalyzed Fluorination Reactions 328</p> <p>10.2.7.1 Cu-Catalyzed Nucleophilic Fluorination 328</p> <p>10.2.7.2 Cu-Mediated Radical Fluorination 331</p> <p>10.2.8 Ag-Catalyzed Fluorination Reactions 333</p> <p>10.2.9 Zn-Catalyzed Fluorination Reactions 339</p> <p>10.3 DFT Modeling of Organocatalytic Fluorination Reactions 340</p> <p>10.3.1 Fluorination Reactions Catalyzed by Chiral Amines 340</p> <p>10.3.1.1 Chiral Secondary Amines-Catalyzed Fluorination Reactions 340</p> <p>10.3.1.2 Chiral Primary Amines-Catalyzed Fluorination Reactions 342</p> <p>10.3.2 Tridentate Bis-Urea Catalyzed Fluorination Reactions 345</p> <p>10.3.3 Hypervalent Iodine-Catalyzed Fluorination Reactions 347</p> <p>10.3.4 <i>N</i>-Heterocyclic Carbene-Catalyzed Fluorination Reactions 351</p> <p>10.4 DFT Modeling of Enzymatic Fluorination Reaction 354</p> <p>10.5 Conclusions 357</p> <p>Acknowledgments 357</p> <p>References 358</p> <p><b>11 Current Trends in the Design of Fluorine-Containing Agrochemicals </b><b>363<br /></b><i>Peter Jeschke</i></p> <p>11.1 Introduction 363</p> <p>11.2 Role of Fluorine in the Design of Modern Agrochemicals 363</p> <p>11.3 Fluorinated Modern Agrochemicals 365</p> <p>11.3.1 Herbicides Containing Fluorine 366</p> <p>11.3.1.1 Acetohydroxyacid Synthase/Acetolactate Synthase Inhibitors 366</p> <p>11.3.1.2 Protoporphyrinogen Oxidase Inhibitors 366</p> <p>11.3.1.3 Cellulose Biosynthesis Inhibitors 367</p> <p>11.3.1.4 Very Long-Chain Fatty Acid Synthesis Inhibitors 368</p> <p>11.3.1.5 Auxin Herbicides 368</p> <p>11.3.1.6 Hydroxyphenylpyruvate Dioxygenase Inhibitors 369</p> <p>11.3.1.7 Selected Fluorine-Containing Herbicide Development Candidates 370</p> <p>11.3.2 Fungicides Containing Fluorine 371</p> <p>11.3.2.1 Fungicidal Succinate Dehydrogenase Inhibitors 371</p> <p>11.3.2.2 Complex III Inhibitors 373</p> <p>11.3.2.3 Sterolbiosynthesis (Sterol-C14-Demethylase) Inhibitors 374</p> <p>11.3.2.4 Polyketide Synthase Inhibitors 374</p> <p>11.3.2.5 Oxysterol-Binding Protein Inhibitors 376</p> <p>11.3.2.6 Selected Fluorine-Containing Fungicide Development Candidates 377</p> <p>11.3.3 Insecticides Containing Fluorine 378</p> <p>11.3.3.1 Nicotinic Acetylcholine Receptor Competitive Modulators 378</p> <p>11.3.3.2 Ryanodine Receptor (RyR) Modulators 382</p> <p>11.3.3.3 GABA-Gated CI-Channel Allosteric Modulators 383</p> <p>11.3.3.4 Selected Fluorine-Containing Insecticide Development Candidates 385</p> <p>11.3.4 Acaricides Containing Fluorine 386</p> <p>11.3.4.1 Mitochondrial Complex II Electron Transport Inhibitors 386</p> <p>11.3.4.2 Selected Fluorine-Containing Acaricide Development Candidates 387</p> <p>11.3.5 Nematicides Containing Fluorine 387</p> <p>11.3.5.1 Nematicides with Unknown Biochemical MoA 387</p> <p>11.3.5.2 Nematicidal Succinate Dehydrogenase Inhibitors 388</p> <p>11.3.5.3 Selected Fluorine-Containing Nematicide Development Candidates 388</p> <p>11.4 Summary and Prospects 389</p> <p>References 390</p> <p><b>12 Precision Radiochemistry for Fluorine-18 Labeling of PET Tracers </b><b>397<br /></b><i>Jian Rong, Ahmed Haider and Steven Liang</i></p> <p>12.1 Introduction 397</p> <p>12.2 Electrophilic <sup>18</sup>F-Fluorination with [<sup>18</sup>F]F<sub>2</sub> and [<sup>18</sup>F]F<sub>2</sub>-Derived Reagents 398</p> <p>12.3 Nucleophilic Aliphatic <sup>18</sup>F-Fluorination 399</p> <p>12.3.1 Transition Metal-Free Nucleophilic Aliphatic Substitution with [<sup>18</sup>F]Fluoride 399</p> <p>12.3.2 Transition Metal-Mediated Aliphatic <sup>18</sup>F-Fluorination 403</p> <p>12.4 Nucleophilic Aromatic <sup>18</sup>F-Fluorination with [<sup>18</sup>F]Fluoride 405</p> <p>12.4.1 Transition Metal-Free Nucleophilic Aromatic <sup>18</sup>F-Fluorination with [<sup>18</sup>F]Fluoride 405</p> <p>12.4.2 Transition Metal-Mediated Aromatic <sup>18</sup>F-Fluorination 413</p> <p>12.5 <sup>18</sup>F-Labeling of Multifluoromethyl Motifs with [<sup>18</sup>F]Fluoride 418</p> <p>12.6 Summary and Conclusions 421</p> <p>References 421</p> <p>Index 427</p>
<p><b>Kálmán J. Szabó</b> is professor at the Department of Organic Chemistry at the Arrhenius Laboratory, Stockholm University (Sweden), since 2003. His major research interests are method development in organic synthesis, catalytic reactions, organoboron and organofluorine (including fluorine-18) chemistry. He is a member of the Royal Swedish Academy of Sciences and has authored over 150 publications. He is the editor of the book <i>Pincer and Pincer-Type Complexes</i> (Wiley-VCH).</p> <p><b>Nicklas Selander</b> is an assistant professor at the Department of Organic Chemistry at Stockholm University (Sweden), since 2018. His research interests include organic synthesis methodology, catalysis, and radical chemistry.</p>

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €