Details

Solar-to-Chemical Conversion


Solar-to-Chemical Conversion

Photocatalytic and Photoelectrochemical Processes
1. Aufl.

von: Hongqi Sun

151,99 €

Verlag: Wiley-VCH (D)
Format: EPUB
Veröffentl.: 29.04.2021
ISBN/EAN: 9783527825080
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>This comprehensive book systematically covers the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. It includes natural photosynthesis with emphasis on artificial processes for solar energy conversion and utilization. The chemical processes of solar energy conversion via homogeneous and/or heterogeneous photocatalysis has been described with the mechanistic insights. It also consists of reaction systems toward a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO2 reduction to fuels, and light driven N2 fixation, etc. This unique book offers the readers a broad view of solar energy utilization based on chemical processes and their perspectives for future sustainability.</p>
<p><b>1 Introduction: A Delicate Collection of Advances in Solar-to-Chemical Conversions 1</b><br /><i>Hongqi Sun</i></p> <p><b>2 Artificial Photosynthesis and Solar Fuels 7</b><br /><i>Jun Ke</i></p> <p>2.1 Introduction of Solar Fuels 7</p> <p>2.2 Photosynthesis 8</p> <p>2.3 Principles of Photocatalysis 10</p> <p>2.4 Products of Artificial Photosynthesis 13</p> <p>2.5 Perspective 34</p> <p><b>3 Natural and Artificial Photosynthesis 41</b><br /><i>Dimitrios A. Pantazis</i></p> <p>3.1 Introduction 41</p> <p>3.2 Overview of Natural Photosynthesis 43</p> <p>3.3 Light Harvesting and Excitation Energy Transfer 44</p> <p>3.4 Charge Separation and Electron Transfer 48</p> <p>3.5 Water Oxidation 53</p> <p>3.6 Carbon Fixation 61</p> <p>3.7 Conclusions 63</p> <p><b>4 Photocatalytic Hydrogen Evolution 77</b><br /><i>Amanj Kheradmand, Yuxiang Zhu, Shengshen Gu and Yijiao Jiang</i></p> <p>4.1 Introduction 77</p> <p>4.2 Fundamentals of Photocatalytic H2 Evolution 79</p> <p>4.3 Photocatalytic H2 Evolution Under UV Light 82</p> <p>4.4 Photocatalytic H2 Evolution Under Visible Light 88</p> <p>4.5 Photocatalytic H2 Evolution Under Near-Infrared Light 95</p> <p>4.6 Roles of Sacrificial Reagents and Reaction Pathways 99</p> <p>4.7 Summary and Outlook 102</p> <p><b>5 Photoelectrochemical Hydrogen Evolution 107</b><br /><i>Zhiliang Wang and Lianzhou Wang</i></p> <p>5.1 Background of PhotoelectrocatalyticWater Splitting 107</p> <p>5.2 Mechanism of Charge Separation and Transfer 109</p> <p>5.3 Strategy for Improving Charge Transfer 112</p> <p>5.4 Strategy for Improving Electron-Hole Separation 116</p> <p>5.5 Surface Cocatalyst Design 120</p> <p>5.6 Unbiased PECWater Splitting 122</p> <p>5.7 Conclusion and Perspective 123</p> <p><b>6 Photocatalytic Oxygen Evolution 129</b><br /><i>Huayang Zhang, Wenjie Tian and Shaobin Wang</i></p> <p>6.1 Introduction 129</p> <p>6.2 Homogeneous PhotocatalyticWater Oxidation 131</p> <p>6.3 Heterogeneous PhotocatalyticWater Oxidation 137</p> <p>6.4 Catalytic Active Site-Catalysis Correlation in LD Semiconductors 156</p> <p>6.5 Conclusions and Perspectives 157</p> <p><b>7 Photoelectrochemical Oxygen Evolution 163</b><br /><i>Fumiaki Amano</i></p> <p>7.1 Introduction 163</p> <p>7.2 Honda-Fujishima Effect 164</p> <p>7.3 Factors Affecting the Photoanodic Current 165</p> <p>7.4 Electrode Potentials at Different pH 168</p> <p>7.5 Evaluation of PEC Performance 170</p> <p>7.6 Flat Band Potential and Photocurrent Onset Potential 172</p> <p>7.7 Selection of Materials 173</p> <p>7.8 Enhancement of PEC Properties 175</p> <p>7.9 PEC Device forWater Splitting 182</p> <p>7.10 Conclusions and Outlook 184</p> <p><b>8 Photocatalytic and Photoelectrochemical Overall Water Splitting 189</b><br /><i>Nur Aqlili Riana Che Mohamad, Filipe Marques Mota and Dong Ha Kim</i></p> <p>8.1 Introduction 189</p> <p>8.2 Photocatalytic OverallWater Splitting 190</p> <p>8.3 Photoelectrochemical OverallWater Splitting 213</p> <p>8.4 Concluding Remarks and Outlook 230</p> <p><b>9 Photocatalytic CO2 Reduction 243</b><br /><i>Maochang Liu, Guijun Chen, Boya Min, Jinwen Shi, Yubin Chen and Qibin Liu</i></p> <p>9.1 Introduction 243</p> <p>9.2 Principle of Photocatalytic Reduction of CO2 245</p> <p>9.3 Energy and Mass Transfers in Photocatalytic Reduction of CO2 247</p> <p>9.4 Conclusions 265</p> <p><b>10 Photoelectrochemical CO2 Reduction 269</b><br /><i>Zhongxue Yang, Hui Ning, Qingshan Zhao, Hongqi Sun and Mingbo Wu</i></p> <p>10.1 Introduction 269</p> <p>10.2 PEC CO2 Reduction Principles 272</p> <p>10.3 Application of Solar-to-Chemical Energy Conversion in PEC CO2 Reduction 276</p> <p>10.4 Other Configurations for PEC CO2 Reduction 289</p> <p>10.5 Conclusion and Outlook 292</p> <p><b>11 Photocatalytic and Photoelectrochemical Nitrogen Fixation 301</b><br /><i>Lei Shi and Hongqi Sun</i></p> <p>11.1 Introduction 301</p> <p>11.2 Fundamental Principles and Present Challenges 303</p> <p>11.3 Strategies for Catalyst Design and Fabrication 307</p> <p>11.4 Conclusions and Outlook 333</p> <p><b>12 Photocatalytic Production of Hydrogen Peroxide Using MOF Materials 339</b><br /><i>Xiaolang Chen, Yasutaka Kuwahara, Kohsuke Mori and Hiromi Yamashita</i></p> <p>12.1 Introduction 339</p> <p>12.2 Photocatalytic H2O2 Production Through Selective Two-Electron Reduction of O2 Utilizing NiO/MIL-125-NH2 340</p> <p>12.3 Two-Phase System Utilizing Linker-Alkylated Hydrophobic MIL-125-NH2 for Photocatalytic H2O2 Production 346</p> <p>12.4 Ti Cluster-Alkylated Hydrophobic MIL-125-NH2 for Photocatalytic H2O2 Production in Two-Phase System 356</p> <p>12.5 Conclusion and Outlooks 362</p> <p><b>13 Photocatalytic and Photoelectrochemical Reforming of Methane 365</b><br /><i>Jinqiang Zhang and Hongqi Sun</i></p> <p>13.1 Introduction 365</p> <p>13.2 Photo-Mediated Processes 367</p> <p>13.3 Differences Between Photo-Assisted Catalysis and Thermocatalysis 369</p> <p>13.4 Reactions of Methane Conversion via Photo-Assisted Catalysis 373</p> <p>13.5 Conclusions and Perspectives 383</p> <p><b>14 Photocatalytic and Photoelectrochemical Reforming of Biomass 389</b><br /><i>Xiaoqing Liu, Wei Wei and Bing-Jie Ni</i></p> <p>14.1 Introduction 389</p> <p>14.2 Fundamentals of Photocatalytic and Photoelectrochemical Processes 391</p> <p>14.3 Photocatalytic Reforming of Biomass 393</p> <p>14.4 Photoelectrochemical Reforming of Biomass 406</p> <p>14.5 Conclusion Remarks and Perspectives 412</p> <p><b>15 Reactors, Fundamentals, and Engineering Aspects for Photocatalytic and Photoelectrochemical Systems 419</b><br /><i>Boon-Junn Ng, Xin Ying Kong, Yi-Hao Chew, Yee Wen Teh and Siang-Piao Chai</i></p> <p>15.1 Fundamental Mechanisms of Photocatalytic and PEC Processes 419</p> <p>15.2 Reactor Design and Configuration 428</p> <p>15.3 Engineering Aspects of Photocatalytic and PEC Processes 436</p> <p>15.4 Conclusions and Outlook 443</p> <p>List of Abbreviations 444</p> <p>References 445</p> <p><b>16 Prospects of Solar Fuels 449</b><br /><i>Hongqi Sun</i></p> <p>Index 453</p>
<p><i><b>Hongqi Sun, PhD</b>, is Full Professor of Chemical Engineering at Edith Cowan University, Australia.</i></p>
<p><b>A state-of-the-art reference to the solar energy conversion and utilization</b></p><p><i>Solar-to-Chemical Conversion: Photocatalytic and Photoelectrochemical Processes</i> offers a comprehensive volume that reviews the fundamentals in solar energy conversion to chemicals, either fuels or chemical products. The editor—a noted expert on the topic—includes information on photosynthesis and highlights the artificial processes for solar energy conversion and utilization.</p><p>The editor explores the chemical processes of solar energy conversion through homogeneous and/or heterogeneous photocatalysis and he includes the mechanistic insights. The book also contains information on reaction systems with a variety of applications, such as water splitting for hydrogen or oxygen evolution, photocatalytic CO<sub>2</sub> reduction to fuels, and light driven N<sub>2</sub> fixation, etc. This innovative book offers a broad view of the use of solar energy based on chemical processes and then provides ideas for future sustainability. This important text:</p><ul><li>Offers a comprehensive review of a wide-range of reactions of solar energy conversion to chemicals</li><li>Presents the most challenging issues that hinder the process to an industrial scale</li><li>Covers functional materials, nanotechnology, novel catalysis, electrochemical process, and solar energy conversion</li><li>Explains the design and theoretical fundamentals of the solar energy conversion to chemicals</li></ul><p>Written for physical chemists, materials scientists, catalytic chemists, environmental chemists, <i>Solar-to-Chemical Conversion</i> is an up-to-date volume that explores the recent advances in photocatalytic and photoelectrochemical synthesis based on the solar energy conversion and utilization.</p>

Diese Produkte könnten Sie auch interessieren:

Solar-to-Chemical Conversion
Solar-to-Chemical Conversion
von: Hongqi Sun
PDF ebook
151,99 €
Diarylethene Molecular Photoswitches
Diarylethene Molecular Photoswitches
von: Masahiro Irie
PDF ebook
124,99 €
Diarylethene Molecular Photoswitches
Diarylethene Molecular Photoswitches
von: Masahiro Irie
EPUB ebook
124,99 €