Details

Wide Bandgap Semiconductors for Power Electronics


Wide Bandgap Semiconductors for Power Electronics

Materials, Devices, Applications
2 Volumes

von: Peter Wellmann, Noboru Ohtani, Roland Rupp

279,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 28.09.2021
ISBN/EAN: 9783527824717
Sprache: englisch
Anzahl Seiten: 736

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Wide Bandgap Semiconductors for Power Electronic</b> <p><b>A guide to the field of wide bandgap semiconductor technology</b> <p><i>Wide Bandgap Semiconductors for Power Electronics </i>is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. <p>The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. <p>This important book: <ul><li>Presents a review of wide bandgap materials and recent developments</li> <li>Links the high potential of wide bandgap semiconductors with the technological implementation capabilities</li> <li>Offers a unique combination of academic and industrial perspectives</li> <li>Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner</li></ul> <p>Written for materials scientists, semiconductor physicists, electrical engineers, <i>Wide Bandgap Semiconductors for Power Electronics</i> provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.
<p><b>Volume 1</b></p> <p>Preface xiii</p> <p><b>Part I Silicon Carbide (SiC) </b><b>1</b></p> <p><b>1 Dislocation Formation During Physical Vapor Transport Growth of 4H-SiC Crystals </b><b>3<br /></b><i>Noboru Ohtani</i></p> <p>1.1 Introduction 3</p> <p>1.2 Formation of Basal Plane Dislocations During PVT Growth of 4H-SiC Crystals 5</p> <p>1.2.1 Plan-View X-ray Topography Observations of Growth Front 5</p> <p>1.2.2 Cross-Sectional X-ray Topography Observations of Growth Front 9</p> <p>1.2.3 Characteristic BPD Distribution in PVT-Grown 4H-SiC Crystals 13</p> <p>1.2.4 BPD Multiplication During PVT Growth 15</p> <p>1.3 Dislocation Formation During Initial Stage of PVT Growth of 4H-SiC Crystals 18</p> <p>1.3.1 Preparation of 4H-SiCWafers with Beveled Interface Between Grown Crystal and Seed Crystal 18</p> <p>1.3.2 Determination of Grown-Crystal/Seed Interface by Raman Microscopy 19</p> <p>1.3.3 X-ray Topography Observations of Dislocation Structure at Grown-Crystal/Seed Interface 22</p> <p>1.3.4 Formation Mechanism of BPD Networks and Their Migration into Seed Crystal 23</p> <p>1.4 Conclusions 28</p> <p>References 30</p> <p><b>2 Industrial Perspectives of SiC Bulk Growth </b><b>33<br /></b><i>Adrian R. Powell</i></p> <p>2.1 Introduction 33</p> <p>2.2 SiC Substrates for GaN LEDs 33</p> <p>2.3 SiC Substrates for Power SiC Devices 34</p> <p>2.4 SiC Substrates for High-Frequency Devices 35</p> <p>2.5 Cost Considerations for Commercial Production of SiC 35</p> <p>2.6 Raw Materials 36</p> <p>2.7 Reactor Hot Zone 37</p> <p>2.8 System Equipment 39</p> <p>2.9 Yield 39</p> <p>2.10 Turning Boules intoWafers 41</p> <p>2.11 Crystal Grind 41</p> <p>2.12 Wafer Slicing 42</p> <p>2.13 Wafer Polish 44</p> <p>2.14 Summary 44</p> <p>Acknowledgments 45</p> <p>References 45</p> <p><b>3 Homoepitaxial Growth of 4H-SiC on Vicinal Substrates </b><b>47<br /></b><i>Birgit Kallinger</i></p> <p>3.1 Introduction 47</p> <p>3.2 Fundamentals of 4H-SiC Homoepitaxy for Power Electronic Devices 47</p> <p>3.2.1 4H-SiC Polytype Replication for Homoepitaxial Growth on Vicinal Substrates 48</p> <p>3.2.2 Homoepitaxial Growth by Chemical Vapor Deposition (CVD) Process 52</p> <p>3.2.3 Doping in Homoepitaxial Growth 53</p> <p>3.3 Extended Defects in Homoepitaxial Layers 55</p> <p>3.3.1 Classification of Extended Defects According to Glide Systems in 4H-SiC 56</p> <p>3.3.2 Dislocation Reactions During Epitaxial Growth 57</p> <p>3.3.3 Characterization Methods for Extended Defects in 4H-SiC Epilayers 59</p> <p>3.4 Point Defects and Carrier Lifetime in Epilayers 62</p> <p>3.4.1 Classification and General Properties of Point Defects in 4H-SiC 62</p> <p>3.4.2 Basics on Recombination Carrier Lifetime in 4H-SiC 64</p> <p>3.4.3 Carrier Lifetime-Affecting Point Defects 65</p> <p>3.4.4 Carrier Lifetime Measurement in Epiwafers and Devices 68</p> <p>3.5 Conclusion 69</p> <p>Acknowledgments 70</p> <p>References 70</p> <p><b>4 Industrial Perspective of SiC Epitaxy </b><b>75<br /></b><i>Albert A. Burk, Jr., Michael J. O’Loughlin, Denis Tsvetkov, and Scott Ustin</i></p> <p>4.1 Introduction 75</p> <p>4.2 Background 76</p> <p>4.3 The Basics of SiC Epitaxy 76</p> <p>4.4 SiC Epi Historical Origins 78</p> <p>4.5 Planetary Multi-wafer Epitaxial Reactor Design Considerations 80</p> <p>4.5.1 Rapidly Rotating Reactors 81</p> <p>4.5.2 Horizontal Hot-Wall Reactors 82</p> <p>4.6 Latest High-Throughput Epitaxial Reactor Status 82</p> <p>4.7 Benefits and Challenges for Increasing Growth Rate in all Reactors 86</p> <p>4.8 IncreasingWafer Diameters, Device Processing Considerations, and Projections 86</p> <p>4.9 Summary 89</p> <p>Acknowledgment 90</p> <p>References 90</p> <p><b>5 Status of 3C-SiC Growth and Device Technology </b><b>93<br /></b><i>Peter Wellmann, Michael Schöler, Philipp Schuh, Mike Jennings, Fan Li, Roberta Nipoti, Andrea Severino, Ruggero Anzalone, Fabrizio Roccaforte, Massimo Zimbone, and Francesco La Via</i></p> <p>5.1 Introduction, Motivation, Short Review on 3C-SiC 93</p> <p>5.2 Nucleation and Epitaxial Growth of 3C-SC on Si 95</p> <p>5.2.1 Growth Process 95</p> <p>5.2.2 Defects 98</p> <p>5.2.3 Stress 102</p> <p>5.3 Bulk Growth of 3C-SiC 103</p> <p>5.3.1 Sublimation Growth of (111)-oriented 3C-SiC on Hexagonal SiC Substrates 104</p> <p>5.3.2 Sublimation Growth of 3C-SiC on 3C-SiC CVD Seeding Layers 105</p> <p>5.3.3 Continuous Fast CVD Growth of 3C-SiC on 3C-SiC CVD Seeding Layers 110</p> <p>5.4 Processing and Testing of 3C-SiC Based Power Electronic Devices 117</p> <p>5.4.1 Prospects for 3C-SiC Power Electronic Devices 117</p> <p>5.4.2 3C-SiC Device Processing 117</p> <p>5.4.3 MOS Processing 118</p> <p>5.4.4 3C-SiC/SiO<sub>2</sub> Interface Passivation 120</p> <p>5.4.5 Surface Morphology Effects on 3C-SiC Thermal Oxidation 121</p> <p>5.4.6 Thermal Oxidation Temperature Effects for 3C-SiC 122</p> <p>5.4.7 Ohmic Contact Metalization 123</p> <p>5.4.8 N-type 3C-SiC Ohmic Contacts 126</p> <p>5.4.9 Ion Implantation 126</p> <p>5.5 Summary 127</p> <p>Acknowledgements 127</p> <p>References 127</p> <p><b>6 Intrinsic and Extrinsic Electrically Active Point Defects in SiC </b><b>137<br /></b><i>Ulrike Grossner, Joachim K. Grillenberger, Judith Woerle, Marianne E. Bathen, and Johanna Müting</i></p> <p>6.1 Characterization of Electrically Active Defects 141</p> <p>6.1.1 Deep Level Transient Spectroscopy 141</p> <p>6.1.1.1 Profile Measurements 143</p> <p>6.1.1.2 Poole–Frenkel Effect 143</p> <p>6.1.1.3 Laplace DLTS 143</p> <p>6.1.2 Low-energy Muon Spin Rotation Spectroscopy 144</p> <p>6.1.2.1 μSR and Semiconductors 144</p> <p>6.1.3 Density Functional Theory 145</p> <p>6.2 Intrinsic Electrically Active Defects in SiC 146</p> <p>6.2.1 The Carbon Vacancy, <i>V</i><sub>C</sub> 147</p> <p>6.2.2 The Silicon Vacancy, <i>V</i><sub>Si</sub> 152</p> <p>6.3 Transition Metal and Other Impurity Levels in SiC 153</p> <p>6.4 Summary 159</p> <p>References 163</p> <p><b>7 Dislocations in 4H-SiC Substrates and Epilayers </b><b>169<br /></b><i>Balaji Raghothamachar and Michael Dudley</i></p> <p>7.1 Introduction 169</p> <p>7.2 Dislocations in Bulk 4H-SiC 170</p> <p>7.2.1 Micropipes (MPs) and Closed-core Threading Screw Dislocations (TSDs) 170</p> <p>7.2.2 Basal Plane Dislocations (BPDs) 171</p> <p>7.2.3 Threading Edge Dislocations (TEDs) 171</p> <p>7.2.4 Interaction between BPDs and TEDs 171</p> <p>7.2.4.1 Hopping Frank–Read Source of BPDs 171</p> <p>7.2.5 Threading Mixed Dislocations (TMDs) in 4H-SiC 173</p> <p>7.2.5.1 Reaction Between Threading Dislocations with Burgers Vectors of −<i>c</i>+<i>a </i>and c+a Wherein the Opposite <i>c</i>-Components Annihilate Leaving Behind the Two <i>a</i>-Components 174</p> <p>7.2.5.2 Reaction Between Threading Dislocations with Burgers Vectors of –<i>c </i>and <i>c</i>+<i>a </i>Leaving Behind the <i>a</i>-Component 175</p> <p>7.2.5.3 Reaction Between Opposite-sign Threading Screw Dislocations with Burgers Vectors <i>c </i>and −<i>c </i>175</p> <p>7.2.5.4 Nucleation of Opposite Pair of <i>c</i>+<i>a </i>Dislocations and Their Deflection 175</p> <p>7.2.5.5 Deflection of Threading <i>c</i>+<i>a</i>, <i>c </i>and Creation of Stacking Faults 177</p> <p>7.2.6 Prismatic Slip during PVT growth 4H-SiC Boules 180</p> <p>7.2.7 Relationship Between Local Basal Plane Bending and Basal Plane Dislocations in PVT-grown 4H-SiC SubstrateWafers 181</p> <p>7.2.8 Investigation of Dislocation Behavior at the Early Stage of PVT-grown 4H-SiC Crystals 181</p> <p>7.3 Dislocations in Homoepitaxial 4H-SiC 184</p> <p>7.3.1 Conversion of BPDs into TEDs 184</p> <p>7.3.2 Susceptibility of Basal Plane Dislocations to the Recombination-Enhanced Dislocation Glide in 4H Silicon Carbide 184</p> <p>7.3.3 Nucleation of TEDs, BPDs, and TSDs at Substrate Surface Damage 188</p> <p>7.3.4 Nucleation Mechanism of Dislocation Half-Loop Arrays in 4H-SiC Homo-Epitaxial Layers 191</p> <p>7.3.5 V- and Y-shaped Frank-type Stacking Faults 192</p> <p>7.4 Summary 192</p> <p>Acknowledgments 195</p> <p>References 195</p> <p><b>8 Novel Theoretical Approaches for Understanding and Predicting Dislocation Evolution and Propagation </b><b>199<br /></b><i>Binh Duong Nguyen and Stefan Sandfeld</i></p> <p>8.1 Introduction 199</p> <p>8.2 General Modeling and Simulation Approaches 200</p> <p>8.3 Continuum Dislocation Modeling Approaches 201</p> <p>8.3.1 Alexander–Haasen Model 201</p> <p>8.3.2 Continuum Dislocation Dynamics Models 202</p> <p>8.3.2.1 The Simplest Model: Straight Parallel Dislocation with the Same Line Direction 203</p> <p>8.3.2.2 The “Groma” Model: Straight Parallel Dislocations with Two Line Directions 203</p> <p>8.3.2.3 The Kröner–Nye Model for Geometrically Necessary Dislocations 204</p> <p>8.3.2.4 Three-dimensional Continuum Dislocation Dynamics (CDD) 204</p> <p>8.4 Example 1: Comparison of the Alexander–Haasen and the Groma Model 206</p> <p>8.4.1 Governing Equations 206</p> <p>8.4.2 Physical System and Model Setup 206</p> <p>8.4.3 Results and Discussion 209</p> <p>8.5 Example 2: Dislocation Flow Between Veins 211</p> <p>8.5.1 A Brief Introduction to Dislocation Patterning and the Similitude Principle 211</p> <p>8.5.2 Physical System and Model Setup 213</p> <p>8.5.3 Geometry and Initial Values 214</p> <p>8.5.4 Results and Discussion 215</p> <p>8.6 Summary and Conclusion 219</p> <p>References 220</p> <p><b>9 Gate Dielectrics for 4H-SiC Power Switches: Understanding the Structure and Effects of Electrically Active Point Defects at the 4H-SiC/SiO<sub>2</sub> Interface </b><b>225<br /></b><i>Gregor Pobegen and Thomas Aichinger</i></p> <p>9.1 Introduction 225</p> <p>9.2 Electrical Impact of Traps on MOSFET Characteristics 225</p> <p>9.2.1 Sub threshold Sweep Hysteresis 226</p> <p>9.2.2 Preconditioning Measurement 231</p> <p>9.2.3 Bias Temperature Instability 233</p> <p>9.2.4 Reduced Channel Electron Mobility 235</p> <p>9.3 Microscopic Nature of Electrically Active Traps Near the Interface 237</p> <p>9.3.1 The P<sub>bC</sub> Defect and the Subthreshold Sweep Hysteresis 237</p> <p>9.3.2 The Intrinsic Electron Trap and the Reduced MOSFET Mobility 238</p> <p>9.3.3 Point Defect Candidates for BTI 240</p> <p>9.4 Conclusions and Outlook 242</p> <p>References 243</p> <p><b>10 Epitaxial Graphene on Silicon Carbide as a Tailorable Metal–Semiconductor Interface </b><b>249<br /></b><i>Michael Krieger and Heiko B. Weber</i></p> <p>10.1 Introduction 249</p> <p>10.2 Epitaxial Graphene as a Metal 249</p> <p>10.3 Fabrication and Structuring of Epitaxial Graphene 250</p> <p>10.3.1 Epitaxial Growth by Thermal Decomposition 250</p> <p>10.3.2 Intercalation 251</p> <p>10.3.3 Structuring of Epitaxial Graphene Layers and Partial Intercalation 252</p> <p>10.4 Epitaxial Graphene as Tailorable Metal/Semiconductor Contact 253</p> <p>10.4.1 Ohmic Contacts 254</p> <p>10.4.2 Schottky Contacts 256</p> <p>10.5 Monolithic Epitaxial Graphene Electronic Devices and Circuits 257</p> <p>10.5.1 Discrete Epitaxial Graphene Devices 257</p> <p>10.5.2 Monolithic Integrated Circuits 259</p> <p>10.6 Novel Experiments on Light–Matter Interaction Enabled by Epitaxial Graphene 260</p> <p>10.6.1 High-Frequency Operation and Ultimate Speed Limits of Schottky Diodes 260</p> <p>10.6.2 Transparent Electrical Access to SiC for Novel Quantum Technology Applications 263</p> <p>10.7 Conclusion 264</p> <p>Acknowledgments 265</p> <p>References 265</p> <p><b>11 Device Processing Chain and Processing SiC in a Foundry Environment </b><b>271<br /></b><i>Arash Salemi, Minseok Kang, Woongje Sung, and Anant K. Agarwal</i></p> <p>11.1 Introduction 271</p> <p>11.2 DMOSFET Structure 271</p> <p>11.3 Process Integration of SiC MOSFETs 273</p> <p>11.3.1 Lithography 283</p> <p>11.3.2 SiC Etching 283</p> <p>11.3.3 Ion Implantation and Activation Annealing 290</p> <p>11.3.4 Oxidation and Oxide 293</p> <p>11.3.5 Post Oxidation Annealing 296</p> <p>11.3.6 Poly-Si Deposition 298</p> <p>11.3.7 Backside Thinning andWaffle Substrates 300</p> <p>11.3.8 Ohmic Contacts and Metallization 301</p> <p>11.3.9 Polyimide Deposition 302</p> <p>11.4 Commercial Foundries for Si and SiC Devices 303</p> <p>11.4.1 Cost Model 303</p> <p>11.4.1.1 Cost Roadmap for WBG Devices 303</p> <p>11.4.2 New Equipment and Processing Requirements 305</p> <p>11.5 Dedicated Foundries vs. Commercial Foundries 306</p> <p>References 307</p> <p><b>12 Unipolar Device in SiC: Diodes and MOSFETs </b><b>319<br /></b><i>Sei-Hyung Ryu</i></p> <p>12.1 Introduction 319</p> <p>12.2 Unipolar Diodes – 4H-SiC JBS Diodes 320</p> <p>12.2.1 Optimization of 4H-SiC JBS Diodes 323</p> <p>12.2.1.1 Injection from the p<sup>+</sup> Regions for Surge Operation 324</p> <p>12.2.1.2 Trench JBS Diodes 326</p> <p>12.2.1.3 Use of LowWork Function Metal for Anode Metal 327</p> <p>12.3 Unipolar Switches: Power MOSFETs 329</p> <p>12.3.1 4H-SiC Power MOSFET Structures 332</p> <p>12.3.1.1 DMOSFETs 332</p> <p>12.3.1.2 Trench MOSFETs 337</p> <p>12.3.2 Advanced Power MOSFET Structures in 4H-SiC 342</p> <p>12.3.2.1 Superjunction MOSFETs in 4H-SiC 342</p> <p>12.3.2.2 Integrated JBS Diodes in 4H-SiC Power MOSFETs 345</p> <p>12.4 Summary 346</p> <p>References 348</p> <p><b>Volume 2</b></p> <p>13 Ultra-High-Voltage SiC Power Device 353<br /><i>Yoshiyuki Yonezawa and Koji Nakayama</i></p> <p>14 SiC Reliability Aspects 387<br /><i>Josef Lutz and Thomas Basler</i></p> <p>15 Industrial Systems Using SiC Power Devices 433<br /><i>Nando Kaminski</i></p> <p>16 Special Focus on HEV and EV Applications: Activities of Automotive Industries Applying SiC Devices for Automotive Applications 467<br /><i>Kimimori Hamada, Keiji Toda, Hiromichi Nakamura, Shigeharu Yamagami, and Kazuhiro Tsuruta</i></p> <p>17 Point Defects in Silicon Carbide for Quantum Technology 503<br /><i>András Csóré and Adam Gali</i></p> <p><b>Part II Gallium Nitride (GaN), Diamond, and Ga<sub>2</sub>O<sub>3</sub> 529</b></p> <p>18 Ammonothermal and HVPE Bulk Growth of GaN 531<br /><i>Robert Kucharski, Tomasz Sochacki, Boleslaw Lucznik, Mikolaj Amilusik, Karolina Grabianska, Malgorzata Iwinska, and Michal Bockowski</i></p> <p>19 GaN on Si: Epitaxy and Devices 555<br /><i>Hidekazu Umeda</i></p> <p>20 Growth of Single Crystal Diamond Wafers for Future Device Applications 583<br /><i>Matthias Schreck</i></p> <p>21 Diamond Wafer Technology, Epitaxial Growth, and Device Processing 633<br /><i>Hideaki Yamada, Hiromitsu Kato, Shinya Ohmagari, and Hitoshi Umezawa</i></p> <p>22 Gallium Oxide: Material Properties and Devices 659<br /><i>Masataka Higashiwaki</i></p> <p>Index 681</p>
<p><b>Peter Wellmann</b>, PhD is Professor at the University of Erlangen-Nuremberg, Department of Materials for Electronics and Energy Technology, Germany.</p> <p><b>Noboru Ohtani</b>, PhD, is Professor at the School of Engineering and Director of the R&D Center for SiC Materials and Processes at Kwansei Gakuin University, Hyogo, Japan.</p> <p><b>Roland Rupp</b>, PhD, was Senior Principal SiC Technology at Infineon AG in Munich, Germany, where he has built up and coordinated the development of SiC technology for power applications.</p>
<p><b>A guide to the field of wide bandgap semiconductor technology</b></p> <p><i>Wide Bandgap Semiconductors for Power Electronics </i>is a comprehensive and authoritative guide to wide bandgap materials silicon carbide, gallium nitride, diamond and gallium(III) oxide. With contributions from an international panel of experts, the book offers detailed coverage of the growth of these materials, their characterization, and how they are used in a variety of power electronics devices such as transistors and diodes and in the areas of quantum information and hybrid electric vehicles. <p>The book is filled with the most recent developments in the burgeoning field of wide bandgap semiconductor technology and includes information from cutting-edge semiconductor companies as well as material from leading universities and research institutions. By taking both scholarly and industrial perspectives, the book is designed to be a useful resource for scientists, academics, and corporate researchers and developers. <p>This important book: <ul><li>Presents a review of wide bandgap materials and recent developments</li> <li>Links the high potential of wide bandgap semiconductors with the technological implementation capabilities</li> <li>Offers a unique combination of academic and industrial perspectives</li> <li>Meets the demand for a resource that addresses wide bandgap materials in a comprehensive manner</li></ul> <p>Written for materials scientists, semiconductor physicists, electrical engineers, <i>Wide Bandgap Semiconductors for Power Electronics</i> provides a state of the art guide to the technology and application of SiC and related wide bandgap materials.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €