Details
Remote C-H Bond Functionalizations
Methods and Strategies in Organic Synthesis1. Aufl.
142,99 € |
|
Verlag: | Wiley-VCH (D) |
Format: | |
Veröffentl.: | 05.01.2021 |
ISBN/EAN: | 9783527824120 |
Sprache: | englisch |
Anzahl Seiten: | 448 |
DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.
Beschreibungen
<p><b>A guide to contemporary advancements in the field of distal C-H functionalizations </b></p> <p>An important and dynamic topic within the modern field of organic synthesis, selective functionalization of C-H bonds can be used in a variety of applications across the pharmaceutical and agrochemical industries. <i>Remote C-H Bond Functionalizations </i>presents an inclusive account of the most recent developments and potential applications of performing variegated functionalizations selectively at the distal positions of organic compounds. </p> <p>Featuring contributions by an international team of experts, this authoritative volume provides deep insight into distal functionalizations, including detailed discussion of mechanisms, the engineering of templates, and the design of strategies. The text covers a diverse range of topics including C-H functionalization of palladium/norbornene catalysis, ruthenium-catalyzed remote functionalization, the non-directed distal C(sp2)-H, functionalization, transition metal catalyzed distal para-selective C-H functionalization, and much more. Reviewing contemporary advancements in the field while laying the foundation for future research, this important resource: </p> <ul> <li>Provides the most recent research and thorough coverage of the subject available in a single volume </li> <li>Offers practical information on C-H functionalizations in various industries </li> <li>Includes an up-to-date introduction to distal C-H functionalizations </li> </ul> <p><i>Remote C-H Bond Functionalizations</i> is a must-read for every synthetic chemist, including chemists working with organometallics, organic chemists and researchers, and industrial chemists. </p>
<p><b>1 Introduction 1</b><br /><i>Uttam Dutta, Srimanta Guin, and Debabrata Maiti</i></p> <p><b>2 Transition Metal-Catalyzed Remote </b><b><i>meta</i></b><b>-C–H Functionalization of Arenes Assisted by </b><b><i>meta</i></b><b>-Directing Templates 7</b><br /><i>Yuzhen Gao and Gang Li</i></p> <p>2.1 Introduction 7</p> <p>2.2 Template-Assisted <i>meta</i>-C–H Functionalization 9</p> <p>2.2.1 Toluene Derivatives 9</p> <p>2.2.2 Acid Derivatives 10</p> <p>2.2.2.1 Hydrocinnamic Acid Derivatives 10</p> <p>2.2.2.2 Phenylacetic Acid Derivatives 16</p> <p>2.2.2.3 Benzoic Acid Derivatives 20</p> <p>2.2.3 Amine and <i>N</i>-Heterocyclic Arene Derivatives 23</p> <p>2.2.3.1 Aniline Derivatives 23</p> <p>2.2.3.2 Benzylamine Derivatives 27</p> <p>2.2.3.3 Phenylethylamine Derivatives 27</p> <p>2.2.3.4 <i>N</i>-Heterocyclic Arene Derivatives 29</p> <p>2.2.4 Sulfonic Acid Derivatives 33</p> <p>2.2.5 Phenol Derivatives 40</p> <p>2.2.6 Alcohol Derivatives 44</p> <p>2.2.7 Silane Derivatives 50</p> <p>2.2.8 Phosphonate Derivatives 51</p> <p>2.3 Mechanistic Considerations 53</p> <p>2.4 Conclusion 55</p> <p>Abbreviations 56</p> <p>References 57</p> <p><b>3 C–H Functionalization of Arenes Under Palladium/Norbornene Catalysis 59</b><br /><i>Juntao Ye and Mark Lautens</i></p> <p>3.1 Introduction 59</p> <p>3.2 Pd(0)-Catalyzed C–H Functionalization of Aryl (Pseudo)Halides 64</p> <p>3.2.1 <i>ortho</i>-Alkylation 64</p> <p>3.2.1.1 <i>ortho</i>-Alkylation with Simple Alkyl Halides 64</p> <p>3.2.1.2 <i>ortho</i>-Alkylation with Bifunctional Alkylating Reagents 70</p> <p>3.2.1.3 <i>ortho</i>-Alkylation with Three-Membered Heterocycles 75</p> <p>3.2.2 <i>ortho</i>-Arylation 77</p> <p>3.2.3 <i>ortho</i>-Acylation and Alkoxycarbonylation 89</p> <p>3.2.4 <i>ortho</i>-Amination 94</p> <p>3.2.5 <i>ortho</i>-Thiolation 101</p> <p>3.3 Pd(II)-Catalyzed C–H Functionalization of Arenes 101</p> <p>3.3.1 C2-Functionalization of Indoles and Pyrroles 101</p> <p>3.3.2 <i>meta</i>-C–H Functionalization of Arenes Containing an <i>ortho</i>-Directing Group 102</p> <p>3.3.3 <i>ortho</i>-C–H Functionalization of Arylboron Species 105</p> <p>3.4 Conclusions and Outlook 108</p> <p>Acknowledgments 109</p> <p>References 110</p> <p><b>4 Directing Group Assisted </b><b><i>meta</i></b><b>-C–H Functionalization of Arenes Aided by Norbornene as Transient Mediator 115</b><br /><i>Hong-Gang Cheng and Qianghui Zhou</i></p> <p>4.1 Introduction 115</p> <p>4.2 <i>meta</i>-C–H Alkylation of Arenes 116</p> <p>4.2.1 Amide as Directing Group 116</p> <p>4.2.2 Sulfonamide as Directing Group 118</p> <p>4.3 <i>meta</i>-C<i>–</i>H Arylation of Arenes 119</p> <p>4.3.1 Amide as Directing Group 119</p> <p>4.3.2 Sulfonamide as Directing Group 122</p> <p>4.3.3 Tertiary Amine as Directing Group 122</p> <p>4.3.4 Tethered Pyridine-Type Directing Group 123</p> <p>4.3.5 Acetal-Based Quinoline as Directing Group 126</p> <p>4.3.6 Free Carboxylic Acid as Directing Group 126</p> <p>4.4 <i>meta</i>-C<i>–</i>H Chlorination of Arenes 127</p> <p>4.5 <i>meta</i>-C–H Amination of Arenes 129</p> <p>4.6 <i>meta</i>-C<i>–</i>H Alkynylation of Arenes 130</p> <p>4.7 Enantioselective <i>meta</i>-C<i>–</i>H Functionalization 130</p> <p>4.8 Conclusion 133</p> <p>Abbreviations 134</p> <p>References 134</p> <p><b>5 Ruthenium-Catalyzed Remote C–H Functionalizations 137</b><br /><i>Korkit Korvorapun, Ramesh C. Samanta, Torben Rogge, and Lutz Ackermann</i></p> <p>5.1 Introduction 137</p> <p>5.2 <i>meta</i>-C–H Functionalizations 138</p> <p>5.2.1 C–H Alkylation 138</p> <p>5.2.2 C–H Benzylation 146</p> <p>5.2.3 C–H Carboxylation 150</p> <p>5.2.4 C–H Acylation 151</p> <p>5.2.5 C–H Sulfonylation 151</p> <p>5.2.6 C–H Halogenation 152</p> <p>5.2.7 C–H Nitration 155</p> <p>5.3 <i>para</i>-C–H Functionalizations 158</p> <p>5.4 <i>meta</i>-/<i>ortho</i>-C–H Difunctionalizations 161</p> <p>5.5 Conclusions 161</p> <p>Acknowledgments 163</p> <p>References 163</p> <p><b>6 Harnessing Non-covalent Interactions for Distal C(sp</b><b>2</b><b>)–H Functionalization of Arenes 169</b><br /><i>Georgi R. Genov, Madalina T. Mihai, and Robert J. Phipps</i></p> <p>6.1 Introduction 169</p> <p>6.2 Non-covalent Interactions in Metal Catalyzed C—H Bond Functionalization 170</p> <p>6.3 Overview of Iridium-Catalyzed Borylation 171</p> <p>6.4 Non-covalent Interactions in Ir-Catalyzed Borylation 174</p> <p>6.5 <i>meta</i>-Selective Borylation using Non-covalent Interactions 176</p> <p>6.6 <i>para</i>-Selective Borylation using Non-covalent Interactions 181</p> <p>6.7 Conclusions 186</p> <p>References 186</p> <p><b>7 The Non-directed Distal C(sp</b><b>2</b><b>)–H Functionalization of Arenes 191</b><br /><i>Arup Mondal, Philipp Wedi, and Manuel van Gemmeren</i></p> <p>7.1 Introduction 191</p> <p>7.1.1 Mechanisms 192</p> <p>7.2 C–Het Formation 193</p> <p>7.2.1 Borylation 193</p> <p>7.2.2 Silylation 195</p> <p>7.2.3 Amination 196</p> <p>7.2.4 Oxygenation 200</p> <p>7.2.5 Other C—Het Bond Forming Reactions 202</p> <p>7.3 C<b>—</b>C Bond Forming Reactions 205</p> <p>7.3.1 C<b>–</b>H-Arylation 206</p> <p>7.3.2 Alkenylation/Olefination 207</p> <p>7.3.3 Cyanation 209</p> <p>7.3.4 Other C<b>—</b>C Bond Forming Reactions 212</p> <p>7.4 Outlook 212</p> <p>References 213</p> <p><b>8 Transition Metal Catalyzed Distal </b><b><i>para</i></b><b>-Selective C–H Functionalization 221</b><br /><i>Uttam Dutta and Debabrata Maiti</i></p> <p>8.1 Introduction 221</p> <p>8.2 Template Assisted <i>para</i>-Selective C–H Functionalization 224</p> <p>8.2.1 Palladium Catalyzed Methods 224</p> <p>8.2.1.1 Alkenylation 224</p> <p>8.2.1.2 Silylation 226</p> <p>8.2.1.3 Ketonization 227</p> <p>8.2.1.4 Acetoxylation 230</p> <p>8.2.1.5 Cyanation 232</p> <p>8.2.2 Rhodium Catalyzed Functionalization 233</p> <p>8.2.2.1 Alkenylation 233</p> <p>8.3 Steric Controlled and Lewis Acid-Transition Metal Cooperative Catalysis 233</p> <p>8.3.1 Nickel Catalyzed Methods 234</p> <p>8.3.1.1 Alkylation and Alkenylation 234</p> <p>8.3.2 Iridium Catalyzed Methods 240</p> <p>8.3.2.1 Borylation 240</p> <p>8.4 Non-covalent Interaction Induced <i>para</i>-C–H Functionalization 242</p> <p>8.4.1 Di-polar Induced Methods 242</p> <p>8.4.2 Ion-Pair Induced Methods 243</p> <p>8.5 Conclusion and the Prospect 244</p> <p>Acknowledgments 246</p> <p>References 246</p> <p><b>9 Regioselective C–H Functionalization of Heteroaromatics at Unusual Positions 253</b><br /><i>Koji Hirano and Masahiro Miura</i></p> <p>9.1 Introduction 253</p> <p>9.2 Indole 253</p> <p>9.2.1 C–H Functionalization at C4 Position 254</p> <p>9.2.2 C<b><i>–</i></b>H Functionalization at C7 Position 258</p> <p>9.2.3 C–H Functionalization at C5 Position 261</p> <p>9.2.4 C–H Functionalization at C6 Position 261</p> <p>9.3 (Benzo)Thiophene 262</p> <p>9.4 Pyrrole 264</p> <p>9.5 Pyridine 266</p> <p>9.6 Miscellaneous Heteroarenes 271</p> <p>9.6.1 Thiazole 271</p> <p>9.6.2 Quinoline 271</p> <p>9.7 Conclusion 272</p> <p>References 273</p> <p><b>10 Directing Group Assisted Distal C(sp</b><b>3</b><b>)–H Functionalization of Aliphatic Substrates 279</b><br /><i>Ya Li, Qi Zhang, and Bing-Feng Shi</i></p> <p>10.1 Introduction 279</p> <p>10.2 γ-C(sp3)–H Functionalization of Aliphatic Acids 280</p> <p>10.3 δ-/ε-C(sp3)—H Bond Functionalization of Aliphatic Amines 288</p> <p>10.4 γ-C(sp3)—H Bond Functionalization of Aliphatic Ketones or Aldehydes 301</p> <p>10.5 γ-/δ-C(sp3)—H Bond Functionalization of Aliphatic Alcohols 305</p> <p>10.6 Conclusions and Outlook 307</p> <p>References 309</p> <p><b>11 Radically Initiated Distal C(sp</b><b>3</b><b>)–H Functionalization 315</b><br /><i>Weipeng Li and Chengjian Zhu</i></p> <p>11.1 Introduction 315</p> <p>11.2 Distal C(sp3)–H Functionalization Promoted by Carbon-Centered Radicals 317</p> <p>11.3 Distal C(sp3)–H Functionalization Promoted by Nitrogen-Centered Radicals 325</p> <p>11.3.1 Generation of Nitrogen Radical from N—X (X = F, Cl, Br, I) Bond 325</p> <p>11.3.2 Generation of Nitrogen Radical from N—N Bond 328</p> <p>11.3.3 Generation of Nitrogen Radical from N—O Bond 329</p> <p>11.3.4 Nitrogen Radical Generated Directly from N—H Bond 331</p> <p>11.4 Oxygen-Centered Radicals Initiate Distal C(sp3)–H Functionalization 333</p> <p>11.4.1 Oxygen Radical Generated from O—X (X = N, O) bond 333</p> <p>11.4.2 Oxygen Radical Generated Directly from O—H Bond 336</p> <p>11.5 Summary and Outlook 338</p> <p>References 339</p> <p><b>12 Non-Directed Functionalization of Distal C(sp</b><b>3</b><b>)—H Bonds 343</b><br /><i>Carlo Sambiagio and Bert U. W. Maes</i></p> <p>12.1 Introduction 343</p> <p>12.1.1 Bond Dissociation Energy (BDE) of C—H Bonds 344</p> <p>12.1.2 Scope of the Chapter 346</p> <p>12.2 Reactions Occurring Without Formation of Metal–Carbon Bonds 346</p> <p>12.2.1 Oxidations with Dioxiranes 346</p> <p>12.2.2 Decatungstate-Photocatalyzed Remote Functionalization 348</p> <p>1.2.3 Electrochemical Remote Functionalizations 353</p> <p>12.2.4 Carbene Insertion into C—H Bonds 356</p> <p>12.3 Reactions Occurring via Formation of Metal–Carbon Bonds 360</p> <p>12.3.1 Pt-Based Shilov Chemistry 361</p> <p>12.3.2 Rh- and Ir-Catalyzed C–H Borylation of (Functionalized) Alkanes 363</p> <p>12.4 Altering Innate Reactivity by Polarity Reversal Strategies 367</p> <p>12.4.1 Remote Functionalization of Aliphatic Amines via Quaternary Ammonium Salts 368</p> <p>12.4.2 Remote Functionalization of Alcohols and Amides via Hydrogen Bond Interactions 376</p> <p>Acknowledgments 378</p> <p>References 378</p> <p><b>13 Remote Oxidation of Aliphatic C—H Bonds with Biologically Inspired Catalysts 383</b><br /><i>Miquel Costas</i></p> <p>13.1 Introduction 383</p> <p>13.1.1 Bioinspired Catalysis as a Tool for Site Selective C—H Bond Oxidation 383</p> <p>13.1.2 Typology of Bioinspired Catalysts 385</p> <p>13.1.3 Site Selectivity in Aliphatic C<b>–</b>H Oxidation: Basic Considerations 387</p> <p>13.2 Innate Substrate Based Aspects Governing Site Selectivity in C–H Oxidations 388</p> <p>13.2.1 C<b>—</b>H Bond Strength 388</p> <p>13.2.2 Electronic Effects 388</p> <p>13.2.3 Steric Effects 391</p> <p>13.2.4 Directing Groups 392</p> <p>13.2.5 Stereoelectronic Effects 393</p> <p>13.2.5.1 Hyperconjugation Effects 393</p> <p>13.2.5.2 Strain Release and Torsional Effects 394</p> <p>13.2.6 Chirality 395</p> <p>13.3 Remote Oxidations by Reversal of Polarity 395</p> <p>13.3.1 Remote Oxidation in Amine Containing Substrates by Protonation of the Amine Site 395</p> <p>13.3.2 Remote Oxidation of Amide Containing Substrates by Methylation of the Amide Moiety 397</p> <p>13.3.3 Remote Oxidation via Polarity Reversal Exerted by Fluorinated Alcohol Solvents 397</p> <p>13.4 Remote Oxidations Guided by Supramolecular Recognition 401</p> <p>13.4.1 Lipophilic Interactions 403</p> <p>13.4.2 Lipophilic Recognition by Cyclodextrins 404</p> <p>13.4.3 Ligand to Metal Coordination 406</p> <p>13.4.4 Hydrogen Bonding 408</p> <p>13.5 Selective Aliphatic C–H Oxidation at Dicopper Complexes 416</p> <p>13.6 Conclusions 417</p> <p>References 418</p> <p>Index 423</p>
<p><b>Debabrata Maiti, PhD</b>, is an Associate Professor in the Department of Chemistry at the Indian Institute of Technology (IIT) Bombay, India, and Visiting Faculty at the University of Pavia, Italy. He is the Associate Editor of the Journal of Organic Chemistry and a member of Editorial Advisory Board of <i>Organometallics and Chemistry</i> - An Asian Journal. </p> <p><b>Srimanta Guin, PhD</b>, is a National Post-doctoral Fellow at the Indian Institute of Technology (IIT) Bombay, India. His current research is focused on the development of transition metal catalyzed distal C-H functionalization of arenes and aliphatic substrates. </p>
<p><b>A guide to contemporary advancements in the field of distal CH functionalization</b> <p><i>Remote CH Bond Functionalizations</i> provides a comprehensive overview on the most recent developments in the field of distal CH functionalization. The text explores how distal CH functionalization can be applied in various pharmaceutical and agrochemical industries. With contributions from a noted panel of experts on the topic, the book offers a coherent and comprehensive discussion about different strategies. <p>The contributors cover a broad range of topics including CH functionalization of palladium/norbornene catalysis, ruthenium-catalyzed remote functionalization, the non-directed distal C(sp<sub>2</sub>)H, functionalization, transition metal catalyzed distal para-selective CH functionalization, and much more. The book also includes information on effective strategies as well as the engineering of templates. Throughout the book, the authors lay the foundations for future research. This important book: <ul> <li>Contains the most recent research on one of the most important topics in organic synthesis</li> <li>Provides a broad overview on contemporary advancements in the field of distal CH functionalization</li> <li>Includes deep insights into distal CH functionalizations</li> <li>Offers information on applications in various industries</li> </ul> <p>Written for organic chemists, chemists working with organometallics, and industrial chemists, <i>Remote CH Bond Functionalizations</i> presents a systematic compilation of the field.