Details

CO2 Hydrogenation Catalysis


CO2 Hydrogenation Catalysis


1. Aufl.

von: Yuichiro Himeda

133,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 30.03.2021
ISBN/EAN: 9783527824090
Sprache: englisch
Anzahl Seiten: 320

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels </b></p> <p>Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, <i>CO2 Hydrogenation Catalysis</i> offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products.   </p> <p>The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: </p> <ul> <li>Offers a unique review of effective catalysts and the latest advances in CO2 conversion </li> <li>Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics </li> <li>Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis </li> <li>Highlights advances and challenges for future investigation </li> </ul> <p>Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, <i>CO2 Hydrogenation Catalysis</i> offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals. </p>
<p>Preface xi</p> <p><b>1 Introduction 1</b><br /><i>Yuichiro Himeda and Matthias Beller</i></p> <p>1.1 Direct Use of CO<sub>2</sub> 1</p> <p>1.2 Chemicals from CO<sub>2</sub> as a Feedstock 2</p> <p>1.3 Application and Market Studies of CO<sub>2</sub> Hydrogenation Products 4</p> <p>1.3.1 Formic Acid/Formate 4</p> <p>1.3.2 Methanol 4</p> <p>1.3.3 Methanation 5</p> <p>1.3.4 Energy Storage 6</p> <p>1.4 Supply of Materials 6</p> <p>1.4.1 CO<sub>2</sub> Supply 6</p> <p>1.4.2 Energy and H<sub>2</sub> Supply 8</p> <p>1.5 Political Aspect: Tax 9</p> <p>1.6 Conclusion and Perspectives 9</p> <p>References 10</p> <p><b>2 Homogeneously Catalyzed CO</b><sub><b>2 </b></sub><b>Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts 13</b><br /><i>Wan-Hui Wang, Xiujuan Feng and Ming Bao</i></p> <p>2.1 Introduction 13</p> <p>2.2 Ir Complexes 14</p> <p>2.2.1 Ir Complexes with <i>N</i>,<i>N</i>-ligands 14</p> <p>2.2.1.1 Tautomerizable <i>N</i>,<i>N</i>-ligands with OH Groups 14</p> <p>2.2.1.2 <i>N</i>,<i>N</i>-ligands with NH Group 30</p> <p>2.2.1.3 Tautomerizable <i>N</i>,<i>N</i>-ligands with OH and NH Groups 32</p> <p>2.2.1.4 Tautomerizable <i>N</i>,<i>N</i>-ligands with Amide Group 33</p> <p>2.2.2 Ir Complexes with <i>C</i>,<i>N</i>- and <i>C</i>,<i>C</i>-ligands 34</p> <p>2.2.3 Ir Complexes with Pincer Ligands 35</p> <p>2.3 Ru Complexes 37</p> <p>2.3.1 Ru Complexes with Phosphorous Ligands 38</p> <p>2.3.2 Ru Complexes with <i>N</i>,<i>N</i>- and <i>N</i>,<i>O</i>-ligands 40</p> <p>2.3.3 Ru Complexes with Pincer Ligands 41</p> <p>2.4 Rh Complexes 46</p> <p>2.5 Summary and Conclusions 49</p> <p>References 49</p> <p><b>3 Homogeneously Catalyzed CO</b><sub><b>2 </b></sub><b>Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts 53</b><br /><i>Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera</i></p> <p>3.1 Introduction 53</p> <p>3.2 Iron-Catalyzed CO<sub>2</sub> Hydrogenation 55</p> <p>3.2.1 Non-pincer-Type Iron Complexes 56</p> <p>3.2.2 Pincer-Type Iron Complexes 63</p> <p>3.3 Cobalt-Catalyzed CO<sub>2 </sub>Hydrogenation 69</p> <p>3.4 Nickel-Catalyzed CO<sub>2 </sub>Hydrogenation 73</p> <p>3.5 Copper-Catalyzed CO<sub>2 </sub>Hydrogenation 77</p> <p>3.6 Manganese-Catalyzed CO<sub>2 </sub>Hydrogenation 78</p> <p>3.7 Other Non-precious Metals for CO<sub>2 </sub>Functionalization 81</p> <p>3.8 Conclusions and Perspectives 85</p> <p>References 86</p> <p><b>4 Catalytic Homogeneous Hydrogenation of CO</b><sub><b>2</b> </sub><b>to Methanol 89</b><br /><i>Sayan Kar, Alain Goeppert and G. K. Surya Prakash</i></p> <p>4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89</p> <p>4.2 Heterogeneous Catalysis for CO<sub>2 </sub>to Methanol 91</p> <p>4.3 Homogeneous Catalysis – An Alternative for CO<sub>2 </sub>to Methanol 92</p> <p>4.3.1 Benefits of Homogeneous Catalysis 92</p> <p>4.3.2 CO<sub>2 </sub>Hydrogenation to Methanol Through Different Routes 92</p> <p>4.3.3 The First Homogeneous System for CO<sub>2 </sub>Reduction to Methanol 93</p> <p>4.3.4 Indirect CO<sub>2 </sub>Hydrogenation 94</p> <p>4.3.5 Direct CO<sub>2 </sub>Hydrogenation 97</p> <p>4.3.5.1 Through Formate Esters 97</p> <p>4.3.5.2 Through Oxazolidinone or Formamides 100</p> <p>4.3.6 CO<sub>2 </sub>to Methanol via Formic Acid Disproportionation 108</p> <p>4.4 Conclusion 109</p> <p>References 110</p> <p><b>5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon </b><b>Dioxide and Bioinspired Computational Design of Base-Metal Catalysts 113</b><br /><i>Xiuli Yan and Xinzheng Yang</i></p> <p>5.1 Introduction 113</p> <p>5.2 H<sub>2</sub> Activation and CO<sub>2 </sub>Insertion Mechanisms 114</p> <p>5.2.1 Hydrogen Activation 114</p> <p>5.2.2 Insertion of CO<sub>2</sub> 115</p> <p>5.3 Hydrogenation of CO<sub>2 </sub>to Formic Acid/Formate 118</p> <p>5.3.1 Catalysts with Precious Metals 118</p> <p>5.3.2 Catalysts with Non-noble Metals 128</p> <p>5.4 Hydrogenation of CO<sub>2 </sub>to Methanol 133</p> <p>5.5 Summary and Conclusions 142</p> <p>References 145</p> <p><b>6 Heterogenized Catalyst for the Hydrogenation of CO<sub>2 </sub>to Formic Acid or Its Derivatives 149</b><br /><i>Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon</i></p> <p>6.1 Introduction 149</p> <p>6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150</p> <p>6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157</p> <p>6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161</p> <p>6.5 Concluding Remarks and Future Directions 172</p> <p>References 173</p> <p><b>7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO</b><sub><b>2 </b></sub><b>Hydrogenation to Formic Acid/Formate 179</b><br /><i>Kohsuke Mori and Hiromi Yamashita</i></p> <p>7.1 Introduction 179</p> <p>7.2 Unsupported Bulk Metal Catalysts 180</p> <p>7.3 Unsupported Metal Nanoparticle Catalysts 181</p> <p>7.3.1 Metal Nanoparticles Without Stabilizers 181</p> <p>7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182</p> <p>7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183</p> <p>7.4 Supported Metal Nanoparticle Catalysts 184</p> <p>7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184</p> <p>7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185</p> <p>7.4.3 Metal Nanoparticles Supported on Al<sub>2</sub>O<sub>3</sub> 189</p> <p>7.4.4 Metal Nanoparticles Supported on TiO<sub>2</sub> 191</p> <p>7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194</p> <p>7.5 Embedded Single-Atom Catalysts 198</p> <p>7.6 Summary and Conclusions 202</p> <p>References 203</p> <p><b>8 Heterogeneously Catalyzed CO</b><b>2 </b><b>Hydrogenation to Alcohols 207</b><br /><i>Nat Phongprueksathat and Atsushi Urakawa</i></p> <p>8.1 Introduction 207</p> <p>8.2 CO<sub>2 </sub>Hydrogenation to Methanol – Past to Present 207</p> <p>8.2.1 Syngas to Methanol 207</p> <p>8.2.2 CO<sub>2 </sub>to Methanol 208</p> <p>8.2.3 Thermodynamic Consideration – Chemical and Phase Equilibria 212</p> <p>8.2.4 Catalyst Developments 215</p> <p>8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217</p> <p>8.2.6 Beyond Industrial Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> Catalysts 223</p> <p>8.3 CO<sub>2 </sub>Hydrogenation to Ethanol and Higher Alcohols – Past to Present 226</p> <p>8.3.1 Background 226</p> <p>8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227</p> <p>8.3.2.1 Modified-Methanol Synthesis Catalyst 227</p> <p>8.3.2.2 Modified Fischer–Tropsch Catalysts 230</p> <p>8.3.2.3 Rhodium-Based Catalysts 231</p> <p>8.3.2.4 Modified Molybdenum-Based Catalysts 232</p> <p>8.4 Summary 232</p> <p>References 233</p> <p><b>9 Homogeneous Electrocatalytic CO<sub>2 </sub>Hydrogenation 237<br /></b><i>Cody R. Carr and Louise A. Berben</i></p> <p>9.1 CO<sub>2 </sub>Reduction to C─H Bond-Containing Compounds: Formate or Formic Acid 237</p> <p>9.1.1 Survey of Catalysts 238</p> <p>9.1.1.1 Group 9 Metal Complexes 238</p> <p>9.1.1.2 Group 8 Metal Complexes 241</p> <p>9.1.1.3 Nickel Complexes 244</p> <p>9.1.1.4 Iron and Iron/Molybdenum Clusters 246</p> <p>9.1.2 Hydride Transfer Mechanisms in CO<sub>2 </sub>Reduction to Formate 247</p> <p>9.1.2.1 Terminal Hydrides 247</p> <p>9.1.2.2 Bridging Hydrides 248</p> <p>9.1.3 Kinetic Factors in Catalyst Design 249</p> <p>9.1.3.1 Roles of Metal–Ligand Cooperation 249</p> <p>9.1.3.2 Roles of Multiple Metal–Metal Bonds 250</p> <p>9.1.4 Thermochemical Considerations in Catalyst Design 253</p> <p>9.1.4.1 Selectivity for Formate over H<sub>2</sub> as a Function of Hydricity 254</p> <p>9.1.4.2 Solvent Dependence of Hydricity 255</p> <p>9.2 Prospects in Electrocatalysis: CO<sub>2 </sub>Reduction Beyond Formation of One C─H</p> <p>Bond 255</p> <p>References 257</p> <p><b>10 Recent Advances in Homogeneous Catalysts for Hydrogen Production </b><b>from Formic Acid and Methanol 259</b><br /><i>Naoya Onishi and Yuichiro Himeda</i></p> <p>10.1 Introduction 259</p> <p>10.2 Formic Acid Dehydrogenation 260</p> <p>10.2.1 Organic Solvent Systems 260</p> <p>10.2.1.1 Ru 260</p> <p>10.2.1.2 Ir 266</p> <p>10.2.1.3 Fe 268</p> <p>10.2.2 Aqueous Solution Systems 270</p> <p>10.2.2.1 Ru 270</p> <p>10.2.2.2 Ir 272</p> <p>10.3 Aqueous-phase Methanol Dehydrogenation 275</p> <p>10.3.1.1 Ir 279</p> <p>10.3.1.2 Non-precious Metals 279</p> <p>10.4 Conclusion 281</p> <p>References 282</p> <p>Index 285</p> <p> </p> <div id="_mcePaste" style="position: absolute; left: -10000px; top: 848px; width: 1px; height: 1px; overflow: hidden;"> <p><b> </b></p> <p>Prefacexi</p> <p><b>1 Introduction </b>1</p> <p><i>Yuichiro Himeda and Matthias Beller</i></p> <p>1.1 Direct Use of CO2 1</p> <p>1.2 Chemicals from CO2 as a Feedstock 2</p> <p>1.3 Application and Market Studies of CO2 Hydrogenation Products 4</p> <p>1.3.1 Formic Acid/Formate 4</p> <p>1.3.2 Methanol 4</p> <p>1.3.3 Methanation 5</p> <p>1.3.4 Energy Storage 6</p> <p>1.4 Supply of Materials 6</p> <p>1.4.1 CO2 Supply 6</p> <p>1.4.2 Energy and H2 Supply 8</p> <p>1.5 Political Aspect: Tax 9</p> <p>1.6 Conclusion and Perspectives 9</p> <p>References 10</p> <p><b>2 Homogeneously Catalyzed CO</b><b>2 </b><b>Hydrogenation to Formic Acid/Formate by Using Precious Metal Catalysts </b>13</p> <p><i>Wan-Hui Wang, Xiujuan Feng and Ming Bao</i></p> <p>2.1 Introduction 13</p> <p>2.2 Ir Complexes 14</p> <p>2.2.1 Ir Complexes with <i>N</i>,<i>N</i>-ligands 14</p> <p>2.2.1.1 Tautomerizable <i>N</i>,<i>N</i>-ligands with OH Groups 14</p> <p>2.2.1.2 <i>N</i>,<i>N</i>-ligands with NH Group 30</p> <p>2.2.1.3 Tautomerizable <i>N</i>,<i>N</i>-ligands with OH and NH Groups 32</p> <p>2.2.1.4 Tautomerizable <i>N</i>,<i>N</i>-ligands with Amide Group 33</p> <p>2.2.2 Ir Complexes with <i>C</i>,<i>N</i>- and <i>C</i>,<i>C</i>-ligands 34</p> <p>2.2.3 Ir Complexes with Pincer Ligands 35</p> <p>2.3 Ru Complexes 37</p> <p>2.3.1 Ru Complexes with Phosphorous Ligands 38</p> <p>2.3.2 Ru Complexes with <i>N</i>,<i>N</i>- and <i>N</i>,<i>O</i>-ligands 40</p> <p>2.3.3 Ru Complexes with Pincer Ligands 41</p> <p>2.4 Rh Complexes 46</p> <p>2.5 Summary and Conclusions 49</p> <p>References 49</p> <p><b>3 Homogeneously Catalyzed CO</b><b>2 </b><b>Hydrogenation to Formic Acid/Formate with Non-precious Metal Catalysts </b>53</p> <p><i>Luca Gonsalvi, Antonella Guerriero and Sylwia Kostera</i></p> <p>3.1 Introduction 53</p> <p>3.2 Iron-Catalyzed CO2 Hydrogenation 55</p> <p>3.2.1 Non-pincer-Type Iron Complexes 56</p> <p>3.2.2 Pincer-Type Iron Complexes 63</p> <p>3.3 Cobalt-Catalyzed CO2 Hydrogenation 69</p> <p>3.4 Nickel-Catalyzed CO2 Hydrogenation 73</p> <p>3.5 Copper-Catalyzed CO2 Hydrogenation 77</p> <p>3.6 Manganese-Catalyzed CO2 Hydrogenation 78</p> <p>3.7 Other Non-precious Metals for CO2 Functionalization 81</p> <p>3.8 Conclusions and Perspectives 85</p> <p>References 86</p> <p><b>4 Catalytic Homogeneous Hydrogenation of CO</b><b>2 </b><b>to Methanol </b>89</p> <p><i>Sayan Kar, Alain Goeppert and G. K. Surya Prakash</i></p> <p>4.1 Carbon Recycling and Methanol in the Early Twenty-First Century 89</p> <p>4.2 Heterogeneous Catalysis for CO2 to Methanol 91</p> <p>4.3 Homogeneous Catalysis – An Alternative for CO2 to Methanol 92</p> <p>4.3.1 Benefits of Homogeneous Catalysis 92</p> <p>4.3.2 CO2 Hydrogenation to Methanol Through Different Routes 92</p> <p>4.3.3 The First Homogeneous System for CO2 Reduction to Methanol 93</p> <p>4.3.4 Indirect CO2 Hydrogenation 94</p> <p>4.3.5 Direct CO2 Hydrogenation 97</p> <p>4.3.5.1 Through Formate Esters 97</p> <p>4.3.5.2 Through Oxazolidinone or Formamides 100</p> <p>4.3.6 CO2 to Methanol via Formic Acid Disproportionation 108</p> <p>4.4 Conclusion 109</p> <p>References 110</p> <p><b>5 Theoretical Studies of Homogeneously Catalytic Hydrogenation of Carbon</b></p> <p><b>Dioxide and Bioinspired Computational Design of Base-Metal Catalysts </b>113</p> <p><i>Xiuli Yan and Xinzheng Yang</i></p> <p>5.1 Introduction 113</p> <p>5.2 H2 Activation and CO2 Insertion Mechanisms 114</p> <p>5.2.1 Hydrogen Activation 114</p> <p>5.2.2 Insertion of CO2 115</p> <p>5.3 Hydrogenation of CO2 to Formic Acid/Formate 118</p> <p>5.3.1 Catalysts with Precious Metals 118</p> <p>5.3.2 Catalysts with Non-noble Metals 128</p> <p>5.4 Hydrogenation of CO2 to Methanol 133</p> <p>5.5 Summary and Conclusions 142</p> <p>References 145</p> <p><b>6 Heterogenized Catalyst for the Hydrogenation of CO</b><b>2 </b><b>to Formic Acid or Its Derivatives </b>149</p> <p><i>Kwangho Park, Gunniya Hariyanandam Gunasekar and Sungho Yoon</i></p> <p>6.1 Introduction 149</p> <p>6.2 Molecular Catalysts Heterogenized on the Surface of Grafted Supports 150</p> <p>6.3 Molecular Catalysts Heterogenized on Coordination Polymers 157</p> <p>6.4 Molecular Catalysts Heterogenized on Porous Organic Polymers 161</p> <p>6.5 Concluding Remarks and Future Directions 172</p> <p>References</p> <p>173</p> <p><b>7 Design and Architecture of Nanostructured Heterogeneous Catalysts for CO</b><b>2 </b><b>Hydrogenation to Formic Acid/Formate </b>179</p> <p><i>Kohsuke Mori and Hiromi Yamashita</i></p> <p>7.1 Introduction 179</p> <p>7.2 Unsupported Bulk Metal Catalysts 180</p> <p>7.3 Unsupported Metal Nanoparticle Catalysts 181</p> <p>7.3.1 Metal Nanoparticles Without Stabilizers 181</p> <p>7.3.2 Metal Nanoparticles Stabilized by Ionic Liquids 182</p> <p>7.3.3 Metal Nanoparticles Stabilized by Reverse Micelles 183</p> <p>7.4 Supported Metal Nanoparticle Catalysts 184</p> <p>7.4.1 Metal Nanoparticles Supported on Carbon-Based Materials 184</p> <p>7.4.2 Metal Nanoparticles Supported on Nitrogen-Doped Carbon 185</p> <p>7.4.3 Metal Nanoparticles Supported on Al2O3 189</p> <p>7.4.4 Metal Nanoparticles Supported on TiO2 191</p> <p>7.4.5 Metal Nanoparticles Supported on Surface-Functionalized Materials 194</p> <p>7.5 Embedded Single-Atom Catalysts 198</p> <p>7.6 Summary and Conclusions 202</p> <p>References 203</p> <p><b>8 Heterogeneously Catalyzed CO</b><b>2 </b><b>Hydrogenation to Alcohols </b>207</p> <p><i>Nat Phongprueksathat and Atsushi Urakawa</i></p> <p>8.1 Introduction 207</p> <p>8.2 CO2 Hydrogenation to Methanol – Past to Present 207</p> <p>8.2.1 Syngas to Methanol 207</p> <p>8.2.2 CO2 to Methanol 208</p> <p>8.2.3 Thermodynamic Consideration – Chemical and Phase Equilibria 212</p> <p>8.2.4 Catalyst Developments 215</p> <p>8.2.5 Active Sites and Reaction Mechanisms: The Case of Cu/ZnO Catalysts 217</p> <p>8.2.6 Beyond Industrial Cu/ZnO/Al2O3 Catalysts 223</p> <p>8.3 CO2 Hydrogenation to Ethanol and Higher Alcohols – Past to Present 226</p> <p>8.3.1 Background 226</p> <p>8.3.2 Catalysts, Active Sites, and Reaction Mechanisms 227</p> <p>8.3.2.1 Modified-Methanol Synthesis Catalyst 227</p> <p>8.3.2.2 Modified Fischer–Tropsch Catalysts 230</p> <p>8.3.2.3 Rhodium-Based Catalysts 231</p> <p>8.3.2.4 Modified Molybdenum-Based Catalysts 232</p> <p>8.4 Summary 232</p> <p>References 233</p> <p><b>9 Homogeneous Electrocatalytic CO</b><b>2 </b><b>Hydrogenation </b>237</p> <p><i>Cody R. Carr and Louise A. Berben</i></p> <p>9.1 CO2 Reduction to C─H Bond-Containing Compounds: Formate or Formic Acid 237</p> <p>9.1.1 Survey of Catalysts 238</p> <p>9.1.1.1 Group 9 Metal Complexes 238</p> <p>9.1.1.2 Group 8 Metal Complexes 241</p> <p>9.1.1.3 Nickel Complexes 244</p> <p>9.1.1.4 Iron and Iron/Molybdenum Clusters 246</p> <p>9.1.2 Hydride Transfer Mechanisms in CO2 Reduction to Formate 247</p> <p>9.1.2.1 Terminal Hydrides 247</p> <p>9.1.2.2 Bridging Hydrides 248</p> <p>9.1.3 Kinetic Factors in Catalyst Design 249</p> <p>9.1.3.1 Roles of Metal–Ligand Cooperation 249</p> <p>9.1.3.2 Roles of Multiple Metal–Metal Bonds 250</p> <p>9.1.4 Thermochemical Considerations in Catalyst Design 253</p> <p>9.1.4.1 Selectivity for Formate over H2 as a Function of Hydricity 254</p> <p>9.1.4.2 Solvent Dependence of Hydricity 255</p> <p>9.2 Prospects in Electrocatalysis: CO2 Reduction Beyond Formation of One C─H</p> <p>Bond 255</p> <p>References 257</p> <p><b>10 Recent Advances in Homogeneous Catalysts for Hydrogen Production</b></p> <p><b>from Formic Acid and Methanol </b>259</p> <p><i>Naoya Onishi and Yuichiro Himeda</i></p> <p>10.1 Introduction 259</p> <p>10.2 Formic Acid Dehydrogenation 260</p> <p>10.2.1 Organic Solvent Systems 260</p> <p>10.2.1.1 Ru 260</p> <p>10.2.1.2 Ir 266</p> <p>10.2.1.3 Fe 268</p> <p>10.2.2 Aqueous Solution Systems 270</p> <p>10.2.2.1 Ru 270</p> <p>10.2.2.2 Ir 272</p> <p>10.3 Aqueous-phase Methanol Dehydrogenation 275</p> <p>10.3.1.1 Ir 279</p> <p>10.3.1.2 Non-precious Metals 279</p> <p>10.4 Conclusion 281</p> <p>References 282</p> <p>Index285</p> <p> </p> </div>
<p><b><i>Yuichiro Himeda</i> </b> <i>is a prime senior researcher at the National Institute of Advanced Industrial Science and Technology in Japan</i>.
<p><b>A guide to the effective catalysts and latest advances in CO<sub>2</sub> conversion in chemicals and fuels</b> <p>Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO<sub>2</sub> emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, <i>CO<sub>2</sub> Hydrogenation Catalysis</i> offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C<sub>2+</sub> products. <p>The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO<sub>2</sub> hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book:<BR> <ul> <li>Offers a unique review of effective catalysts and the latest advances in CO<sub>2</sub> conversion</li> <li>Explores how to utilize CO<sub>2</sub> emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics</li> <li>Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis</li> <li>Highlights advances and challenges for future investigation</li> </ul> <p>Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, <i>CO<sub>2</sub> Hydrogenation Catalysis</i> offers a comprehensive resource to understanding how CO<sub>2</sub> emissions can create value-added chemicals.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €