Details

Mechanical and Dynamic Properties of Biocomposites


Mechanical and Dynamic Properties of Biocomposites


1. Aufl.

von: Senthilkumar Krishnasamy, Rajini Nagarajan, Senthil Muthu Kumar Thiagamani, Suchart Siengchin

144,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 30.04.2021
ISBN/EAN: 9783527822324
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Mechanical and Dynamic Properties of Biocomposites</b> <p><b>A comprehensive review of the properties of biocomposites and their applications</b><p><i>Mechanical and Dynamic Properties of Biocomposites</i> offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering.<p>With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization.<p>Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects.<p>Key features:<ul><li>Presents viable alternatives to conventional composites</li><li>Examines the environmentally friendly and favorable mechanical properties of biocomposites</li><li>Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering</li><li>Brings together in one comprehensive resource information found scattered across the professional literature</li></ul><p>Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, <i>Mechanical and Dynamic Properties of BIocomposites</i> offers a compreshensive review of the properties and applications of biocomposites.
<p><b>1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites </b><b>1<br /></b><i>Adelani A. Oyeniran and Sikiru O. Ismail</i></p> <p>1.1 Introduction 1</p> <p>1.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites 3</p> <p>1.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites 3</p> <p>1.2.2 Polymer Matrices 4</p> <p>1.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites 7</p> <p>1.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites 10</p> <p>1.4.1 Hybrid Natural FRP Composites 11</p> <p>1.4.1.1 Bagasse/Jute FRP Hybrid Composites 11</p> <p>1.4.1.2 Bamboo/MFC FRP Hybrid Composites 12</p> <p>1.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites 12</p> <p>1.4.1.4 Coconut/Cork FRP Hybrid Composites 14</p> <p>1.4.1.5 Coir/Silk FRP Hybrid Composites 15</p> <p>1.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites 16</p> <p>1.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites 16</p> <p>1.4.1.8 Jute/OPEFB FRP Hybrid Composites 18</p> <p>1.4.1.9 Kenaf/PALF FRP Hybrid Composites 18</p> <p>1.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites 19</p> <p>1.5 Other Related Properties that Are Dependent on Mechanical Properties 20</p> <p>1.5.1 Tribological Behavior 20</p> <p>1.5.2 Thermal Behavior 21</p> <p>1.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites 21</p> <p>1.7 Conclusions 22</p> <p>References 23</p> <p><b>2 Mechanical Behavior of Additive Manufactured Porous Biocomposites </b><b>27<br /></b><i>Ramu Murugan and Mohanraj Thangamuthu</i></p> <p>2.1 Introduction 27</p> <p>2.2 Human Bone 27</p> <p>2.3 Porous Scaffold 29</p> <p>2.4 Biomaterials for Scaffolds 30</p> <p>2.4.1 Required Properties of Biomaterials 30</p> <p>2.4.2 Types of Biomaterials 31</p> <p>2.4.2.1 Metals 31</p> <p>2.4.2.2 Polymers 31</p> <p>2.4.2.3 Ceramics 32</p> <p>2.4.2.4 Composites 32</p> <p>2.5 Additive Manufacturing of Porous Structures 33</p> <p>2.5.1 Generic Process of AM 33</p> <p>2.5.2 Powder Bed Fusion Process 34</p> <p>2.5.3 Fused Deposition Modeling Process 35</p> <p>2.5.4 Additive Manufacturing of Porous Biocomposites 35</p> <p>2.6 Design of Porous Scaffold 36</p> <p>2.6.1 Pore Size 36</p> <p>2.6.2 Pore Geometry 37</p> <p>2.6.3 Bioceramics as Reinforcement Material 37</p> <p>2.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites 38</p> <p>2.8 Conclusion 41</p> <p>References 41</p> <p><b>3 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites </b><b>49<br /></b><i>R.A. Ilyas, S.M. Sapuan, M.R.M. Asyraf, M.S.N. Atikah, R. Ibrahim, Mohd N.F. Norrrahim, Tengku A.T. Yasim-Anuar, and Liana N. Megashah</i></p> <p>3.1 Introduction 49</p> <p>3.2 Mechanical Properties of Macro-scale Fiber 50</p> <p>3.3 Mechanical Properties of Nano-scale Fiber 50</p> <p>3.3.1 Factors Affecting Mechanical Properties of Bionanocomposites 50</p> <p>3.3.1.1 Fabrication Method 51</p> <p>3.3.1.2 Nanocellulose Loading 53</p> <p>3.3.1.3 Nanocellulose Dispersion and Distribution 53</p> <p>3.3.1.4 Nanocellulose Orientation 53</p> <p>3.3.2 The Static Mechanical Properties of Bionanocomposites 54</p> <p>3.4 Dynamic Mechanical Analysis (DMA) of Biocomposites 55</p> <p>3.4.1 Single Fiber 57</p> <p>3.4.1.1 Sugar Palm 57</p> <p>3.4.1.2 Bamboo 57</p> <p>3.4.1.3 Kenaf 59</p> <p>3.4.1.4 Alfa 59</p> <p>3.4.1.5 Carnauba 59</p> <p>3.4.1.6 Pineapple Leaf Fiber (PALF) 60</p> <p>3.4.1.7 Oil Palm Fiber (OPF) 60</p> <p>3.4.1.8 Red Algae 60</p> <p>3.4.1.9 Banana 61</p> <p>3.4.1.10 Flax 62</p> <p>3.4.1.11 Jute 62</p> <p>3.4.1.12 Hemp 63</p> <p>3.4.1.13 Waste Silk Fiber 63</p> <p>3.4.1.14 Henequen 64</p> <p>3.4.2 Hybrid Fiber 64</p> <p>3.4.2.1 Sisal/Oil Palm 64</p> <p>3.4.2.2 Coir/PALF 65</p> <p>3.4.2.3 Kenaf/PALF 65</p> <p>3.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute 66</p> <p>3.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose 66</p> <p>3.5 Dynamic Mechanical Properties of Bionanocomposites 66</p> <p>3.5.1 The Dynamic Mechanical Properties of Bionano composites 67</p> <p>3.6 Conclusion 68</p> <p>References 68</p> <p><b>4 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers </b><b>77<br /></b><i>Nadir Ayrilmis, Sarawut Rimdusit, Rajini Nagarajan, and M.P. Indira Devi</i></p> <p>4.1 Introduction 77</p> <p>4.2 Major Factors Influencing Quality of Biocomposites 82</p> <p>4.2.1 Selection of Natural Fibers 82</p> <p>4.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites 85</p> <p>4.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites 88</p> <p>4.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification 91</p> <p>4.2.5 Type of Polymer Matrix 95</p> <p>4.2.6 Processing Conditions in the Manufacture of Biocomposite 96</p> <p>4.2.7 Presence of Voids and Porosity 98</p> <p>4.2.8 Nanocellulose-Reinforced Biocomposites 98</p> <p>4.2.8.1 Preparation and Properties of Cellulose Nanofibers 101</p> <p>4.2.8.2 Industrial Applications of Cellulose Nanofibers 101</p> <p>4.3 Conclusions 103</p> <p>References 103</p> <p><b>5 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using <i>S</i>/<i>N </i>Ratio and ANOVA Method </b><b>109<br /></b><i>Balasubramaniam Stalin, Ayyanar Athijayamani, and Rajini Nagarajan</i></p> <p>5.1 Introduction 109</p> <p>5.2 Experimental Methodology 111</p> <p>5.2.1 Materials 111</p> <p>5.2.2 Specimen Preparation 111</p> <p>5.2.3 Machining of the Composite Specimen 111</p> <p>5.2.4 Selection of Orthogonal Array 111</p> <p>5.2.5 Development of Multivariable Nonlinear Regression Model 113</p> <p>5.3 Results and Discussion 114</p> <p>5.3.1 Influence of Machining Parameters on Thrust Force and Torque 114</p> <p>5.3.2 <i>S</i>/<i>N </i>Ratio 115</p> <p>5.3.3 ANOVA 115</p> <p>5.3.4 Correlation of Machining Parameters with Responses 116</p> <p>5.3.5 Confirmation Test 117</p> <p>5.4 Conclusions 118</p> <p>References 118</p> <p><b>6 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites </b><b>121<br /></b><i>Brijesh Gangil, Lalit Ranakoti, and Pawan K. Rakesh</i></p> <p>6.1 Introduction 121</p> <p>6.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite 122</p> <p>6.3 Dynamic Mechanical Analysis 124</p> <p>6.4 Storage Modulus (<i>E</i>’) of Kenaf Fiber–Polymer Composite 125</p> <p>6.5 Loss Modulus (<i>E</i>’’) of Kenaf Fiber–Polymer Composite 125</p> <p>6.6 Damping Factor (Tan <i>𝛿</i>) 126</p> <p>6.7 Glass Transition Temperatures (<i>T</i><sub>g</sub>) 127</p> <p>6.8 Conclusion 130</p> <p>References 131</p> <p><b>7 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites </b><b>135<br /></b><i>Sabarish Radoor, Jasila Karayil, Aswathy Jayakumar, and Suchart Siengchin</i></p> <p>7.1 Introduction 135</p> <p>7.2 Mechanical Properties of Natural Fibers 135</p> <p>7.3 Drawbacks of Natural Fibers 136</p> <p>7.4 Surface Modification of Natural Fibers 137</p> <p>7.4.1 Chemical Treatment 137</p> <p>7.4.2 Alkaline Treatment 137</p> <p>7.4.3 Silane Treatment 140</p> <p>7.4.4 Acetylation Treatment 143</p> <p>7.4.5 Benzylation Treatment 145</p> <p>7.4.6 Peroxide Treatment 146</p> <p>7.5 Maleated Coupling Agents 147</p> <p>7.5.1 Isocyanate 148</p> <p>7.5.2 Permanganate Treatment 150</p> <p>7.5.3 Stearic Acid Treatment 151</p> <p>7.5.4 Physical Treatment 152</p> <p>7.5.5 Plasma Treatment 152</p> <p>7.5.6 Corona Treatment 154</p> <p>7.5.7 Ozone Treatment 155</p> <p>7.6 Summary 156</p> <p>References 156</p> <p><b>8 Mechanical and Tribological Characteristics of IndustrialWaste and Agro Waste Based Hybrid Composites </b><b>163<br /></b><i>Vigneswaran Shanmugam, Uthayakumar Marimuthu, Veerasimman Arumugaprabu, Sundarakannan Rajendran, and Rajendran Deepak Joel Johnson</i></p> <p>8.1 Introduction 163</p> <p>8.2 Materials and Methods 164</p> <p>8.2.1 Scanning Electron Microscopy (SEM) 166</p> <p>8.3 Result and Discussion 166</p> <p>8.3.1 Effect of Chemical Treatment on Fiber 166</p> <p>8.3.2 Mechanical Behavior 167</p> <p>8.3.3 Erosion Behavior 169</p> <p>8.3.3.1 Effect of Fiber Treatment on Erosion Rate 169</p> <p>8.3.3.2 Effect of Red Mud Addition on Erosion Rate 170</p> <p>8.3.3.3 Effect of Impact Angle on Erosion Rate 170</p> <p>8.4 Conclusion 173</p> <p>References 173</p> <p><b>9 Dynamic Properties of Kenaf-Fiber-Reinforced Composites </b><b>175<br /></b><i>Rashed Al Mizan, Nur N. Akter, and Mohammad I. Iqbal</i></p> <p>9.1 Introduction 175</p> <p>9.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites 176</p> <p>9.3 Characterization 177</p> <p>9.3.1 Dynamic Mechanical Analysis (DMA) 178</p> <p>9.3.2 Thermogravimetric Analysis (TGA) 178</p> <p>9.3.3 Vibration-Damping Testing 178</p> <p>9.3.4 Acoustic Properties 179</p> <p>9.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite 179</p> <p>9.4.1 Dynamic Mechanical Properties (DMA) 180</p> <p>9.4.2 TGA Analysis of Composites 184</p> <p>9.4.3 Acoustic Properties 186</p> <p>9.5 Conclusion 187</p> <p>References 187</p> <p><b>10 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites </b><b>191<br /></b><i>Mohit Hemath, Govindrajulu Hemath Kumar, Varadhappan Arul Mozhi Selvan, Mavinkere R. Sanjay, and Suchart Siengchin</i></p> <p>10.1 Introduction 191</p> <p>10.2 Materials and Methods 193</p> <p>10.2.1 Materials 193</p> <p>10.2.2 Production of Al-SiC Nanoparticles 193</p> <p>10.2.3 Fabrication of Epoxy Composites 194</p> <p>10.2.4 Epoxy Composite Characterization 194</p> <p>10.2.4.1 Porosity, Density, and Volume Fraction 194</p> <p>10.2.4.2 Tensile Properties 194</p> <p>10.2.4.3 Flexural Properties 194</p> <p>10.2.4.4 Impact Strength 195</p> <p>10.2.4.5 Dynamic Mechanical Analysis (DMA) 195</p> <p>10.2.4.6 Morphological Properties 195</p> <p>10.3 Results and Discussion 195</p> <p>10.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites 195</p> <p>10.3.2 Tensile Characteristics 196</p> <p>10.3.3 Flexural Characteristics 197</p> <p>10.3.4 Impact Characteristics 198</p> <p>10.3.5 Dynamic Mechanical Analysis 199</p> <p>10.3.5.1 Storage Modulus 199</p> <p>10.3.5.2 Loss Modulus 200</p> <p>10.3.5.3 Damping Factor 201</p> <p>10.3.6 Morphological Characteristics 201</p> <p>10.4 Conclusion 201</p> <p>References 202</p> <p><b>11 Effect of Fillers on Natural Fiber–Polymer Composite: An Overview of Physical and Mechanical Properties </b><b>207<br /></b><i>Annamalai Saravanakumaar, Arunachalam Senthilkumar, and Balasundaram Muthu Chozha Rajan</i></p> <p>11.1 Introduction 207</p> <p>11.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites 208</p> <p>11.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites 208</p> <p>11.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites 209</p> <p>11.5 Influence of Fly Ash onWood Fiber Geopolymer Composites 210</p> <p>11.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites 211</p> <p>11.7 Influence of <i>Portunus sanguinolentus </i>Shell Powder on the Jute Fiber–Epoxy Composite 212</p> <p>11.8 Influence of Nano-SiO<sub>2</sub> Filler on the <i>Phaseolus vulgaris </i>Fiber–Polyester Composite 214</p> <p>11.9 Influence of Aluminum Hydroxide (Al(OH)<sub>3</sub>) Filler on the Vulgaris Banana Fiber–Epoxy Composite 215</p> <p>11.10 Influence of Palm and Coconut Shell Filler on the Hemp–Kevlar Fiber–Epoxy Composite 216</p> <p>11.11 Influence of Coir Powder Filler on Polyester Composite 217</p> <p>11.12 Influence of CaCO<sub>3</sub> (Calcium Carbonate) Filler on the Luffa Fiber–Epoxy Composite 217</p> <p>11.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite 218</p> <p>11.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber–Natural Rubber Composite 220</p> <p>11.15 Influence of Groundnut Shell, Rice Husk, andWood Powder Fillers on the <i>Luffa cylindrica </i>Fiber–Polyester Composite 220</p> <p>11.16 Influence of Rice Husk Fillers on the <i>Bauhinia vahlii </i>– Sisal Fiber–Epoxy Composite 221</p> <p>11.17 Influence of Areca Fine Fiber Fillers on the <i>Calotropis gigantea </i>Fiber Phenol Formaldehyde Composite 221</p> <p>11.18 Influence of Tamarind Seed Fillers on the Flax Fiber–Liquid Thermoplastic Composite 223</p> <p>11.19 Influence ofWalnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites 223</p> <p>11.20 Influence ofWaste Vegetable Peel Fillers on the Epoxy Composite 224</p> <p>11.21 Influence of <i>Clusia multiflora </i>Saw Dust Fillers on the Rubber Composite 224</p> <p>11.22 Influence ofWood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite 225</p> <p>11.23 Influence ofWood Dust Fillers (Rosewood and Padauk) on the Jute Fiber–Epoxy Composite 225</p> <p>11.24 Summary 226</p> <p>11.25 Conclusions 226</p> <p>References 231</p> <p><b>12 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of <i>Sansevieria cylindrical </i>Reinforced Biochar-Tailored Vinyl Ester Composite </b><b>235<br /></b><i>Rajendran Deepak Joel Johnson, Veerasimman Arumugaprabu, Rajini Nagarajan, Fernando G. Souza, and Vigneswaran Shanmugam</i></p> <p>12.1 Introduction 235</p> <p>12.2 Materials and Method 236</p> <p>12.2.1 Materials 236</p> <p>12.2.2 Biochar Characterization 238</p> <p>12.2.2.1 Particle Size Analyzer 238</p> <p>12.2.2.2 X-ray Diffraction 238</p> <p>12.2.2.3 FTIR Spectroscopy 238</p> <p>12.2.3 Composite Fabrication 239</p> <p>12.2.4 Dynamic Mechanical Analysis (DMA) 239</p> <p>12.2.5 Tensile Testing 239</p> <p>12.2.6 Flexural Testing 240</p> <p>12.2.7 Impact Testing 240</p> <p>12.2.8 Scanning Electron Microscopy 240</p> <p>12.3 Results and Discussion 240</p> <p>12.3.1 Biochar Characterization 240</p> <p>12.3.1.1 Particle Analyzer 240</p> <p>12.3.1.2 Fourier Transform (InfraRed) Spectroscopy 240</p> <p>12.3.1.3 X-ray Diffraction 242</p> <p>12.3.2 Dynamic Mechanical Analysis 243</p> <p>12.3.3 Tensile Tests 247</p> <p>12.3.4 Flexural Tests 248</p> <p>12.3.5 Impact Tests 249</p> <p>12.4 Conclusions 251</p> <p>References 251</p> <p><b>13 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite </b><b>255<br /></b><i>Rajendren Sundarakannan, Vigneswaran Shanmugam, Veerasimman Arumugaprabu, Vairavan Manikandan, and Paramasivan Sivaranjana</i></p> <p>13.1 Introduction 255</p> <p>13.2 Materials and Methods 257</p> <p>13.2.1 Biochar Preparation 257</p> <p>13.2.2 Composite Preparation 257</p> <p>13.2.3 Mechanical Testing 258</p> <p>13.3 Results and Discussion 258</p> <p>13.3.1 Tensile Strength 258</p> <p>13.3.2 Flexural Strength 259</p> <p>13.3.3 Impact Strength 260</p> <p>13.3.4 Hardness 260</p> <p>13.3.5 Failure Analysis of Cashew NutshellWaste Extracted Biochar-Reinforced Polymer Composites 261</p> <p>13.3.5.1 Tensile Strength Failure Analysis 261</p> <p>13.3.5.2 Flexural Strength Failure Analysis 262</p> <p>13.3.5.3 Impact Strength Failure Analysis 262</p> <p>13.4 Conclusion 263</p> <p>References 263</p> <p><b>14 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites </b><b>265<br /></b><i>Banisetti Manoj, Chandrasekar Muthukumar, Chennuri Phani Durga Prasad, Swathi Manickam, and Titus I. Benjamin</i></p> <p>14.1 Introduction 265</p> <p>14.1.1 Sisal Fibers 265</p> <p>14.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite 266</p> <p>14.2 Materials and Methods 266</p> <p>14.2.1 Materials 266</p> <p>14.2.2 Fabrication Method 266</p> <p>14.2.3 Characterization 266</p> <p>14.2.3.1 Tensile Test 266</p> <p>14.2.3.2 Flexural Test 267</p> <p>14.2.3.3 Moisture Diffusion 267</p> <p>14.3 Results and Discussion 267</p> <p>14.3.1 Tensile Properties 267</p> <p>14.3.2 Flexural Properties 269</p> <p>14.3.3 Water Absorption 271</p> <p>14.4 Conclusion 272</p> <p>References 272</p> <p><b>15 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites </b><b>275<br /></b><i>Manickam Ramesh, Lakshminarasimhan Rajeshkumar, and Devarajan Balaji</i></p> <p>15.1 Introduction 275</p> <p>15.2 Mechanical Strength of Ramie Fiber Composites 277</p> <p>15.3 Dynamic Properties of Ramie Fiber Composites 281</p> <p>15.3.1 Temperature Influence 283</p> <p>15.3.2 Storage Modulus 283</p> <p>15.3.3 Viscous Modulus 284</p> <p>15.3.4 Damping Factor 284</p> <p>15.4 Conclusion 288</p> <p>References 289</p> <p><b>16 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review </b><b>293<br /></b><i>Haasith Chittimenu, Monesh Pasupureddy, Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Suchart Siengchin</i></p> <p>16.1 Introduction 293</p> <p>16.1.1 Fracture Toughness Tests 294</p> <p>16.1.2 Mode-I Loading 296</p> <p>16.1.2.1 Double Cantilever Beam Method (DCB) 296</p> <p>16.1.2.2 Compact Tensile Method (CT) 296</p> <p>16.1.2.3 Single-Edge Notch Bend Test (SENB) 296</p> <p>16.1.3 Mode-II Loading 297</p> <p>16.1.3.1 End-Notched Flexure Test (ENF) 297</p> <p>16.1.4 Mode-III Loading 297</p> <p>16.1.4.1 Split Cantilever Beam Method (SCB) 297</p> <p>16.1.4.2 Edge Crack Torsion Test (ECT) 298</p> <p>16.1.4.3 Mixed Mode Bend Test (MMB) 298</p> <p>16.2 Factors Affecting the Fracture Energy of the Biocomposites 298</p> <p>16.2.1 Fiber Parameters 298</p> <p>16.2.2 Hybridization 299</p> <p>16.2.3 Fiber Treatment 299</p> <p>16.2.4 Aging 301</p> <p>16.3 Conclusion 302</p> <p>Acknowledgments 302</p> <p>References 302</p> <p><b>17 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites </b><b>305<br /></b><i>Arun Prasath Kanagaraj, Amuthakkannan Pandian, Veerasimman Arumugaprabu, Rajendran Deepak Joel Johnson, Vigneswaran Shanmugam, and Vairavan Manikandan</i></p> <p>17.1 Introduction 305</p> <p>17.2 Materials and Methods 307</p> <p>17.2.1 Materials 307</p> <p>17.2.2 Fabrication of Composites 307</p> <p>17.2.3 Dynamic Mechanical Analysis 307</p> <p>17.3 Result and Discussion 308</p> <p>17.3.1 Damping Factor (Tan <i>𝛿</i>) Response of Basalt/Flax Fiber Composite 308</p> <p>17.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite 308</p> <p>17.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites 309</p> <p>17.4 Conclusions 309</p> <p>Acknowledgments 310</p> <p>References 310</p> <p>Index 313</p>
<p><i><b>Senthilkumar Krishnasamy</b> is Associate Professor, at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India</i>.</p><p><i><b>Rajini Nagarajan</b> is Professor in Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India</i>.</p><p><i><b>Senthil Muthu Kumar Thiagamani</b> Associate Professor at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India</i>.</p><p><i><b> Suchart Siengchin</b> is Professor at the Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand</i>.</p>
<p><b>A comprehensive review of the properties of biocomposites and their applications</b></p><p><i>Mechanical and Dynamic Properties of Biocomposites</i> offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering.</p><p>With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization.</p><p>Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects.</p><p>Key features:</p><ul><li>Presents viable alternatives to conventional composites</li><li>Examines the environmentally friendly and favorable mechanical properties of biocomposites</li><li>Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering</li><li>Brings together in one comprehensive resource information found scattered across the professional literature</li></ul><p>Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, <i>Mechanical and Dynamic Properties of BIocomposites</i> offers a compreshensive review of the properties and applications of biocomposites.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €