Details

Flexible and Stretchable Triboelectric Nanogenerator Devices


Flexible and Stretchable Triboelectric Nanogenerator Devices

Toward Self-powered Systems
1. Aufl.

von: Mengdi Han, Xiaosheng Zhang, Haixia Zhang

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 07.08.2019
ISBN/EAN: 9783527820160
Sprache: englisch
Anzahl Seiten: 424

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The book starts with the fundamentals of triboelectric nanogenerators (TENGs), and continues through to fabrication technologies to achieve flexible and stretchable. Then self-powered flexible microsystems are introduced and application examples are presented, including TENG-based active sensors, TENG-powered actuators, artificial intelligence and integrated systems.
<p>Preface xv</p> <p><b>Part I Fundamentals of Triboelectric Nanogenerator </b><b>1</b></p> <p><b>1 Overview of Triboelectric Nanogenerators </b><b>3<br /></b><i>Xiaosheng Zhang</i></p> <p>1.1 Energy Crisis of Microsystems 3</p> <p>1.2 Microenergy Technologies 5</p> <p>1.2.1 Photovoltaic Effect 7</p> <p>1.2.2 Thermoelectric Effect 7</p> <p>1.2.3 Electromagnetic Effect 8</p> <p>1.2.4 Piezoelectric Effect 8</p> <p>1.3 Triboelectric Nanogenerators 9</p> <p>1.3.1 Principle of Triboelectric Nanogenerators 9</p> <p>1.3.2 Key Factor: Triboelectric Series 11</p> <p>1.3.3 Material Progress of Triboelectric Nanogenerators 11</p> <p>1.3.4 Challenges of Triboelectric Nanogenerators 14</p> <p>1.4 Summary 14</p> <p>Abbreviations 15</p> <p>References 15</p> <p><b>2 Structures of Triboelectric Nanogenerators </b><b>19<br /></b><i>Haixia Zhang</i></p> <p>2.1 Operation Mechanisms of TENGs 19</p> <p>2.1.1 Contact-Separation (CS) Mode 21</p> <p>2.1.2 Relative-Sliding (RS) Mode 21</p> <p>2.1.3 Single-Electrode (SE) Mode 22</p> <p>2.1.4 Freestanding (FS) Mode 22</p> <p>2.2 Typical Structures of TENGs 24</p> <p>2.2.1 Plane-Shaped TENGs 24</p> <p>2.2.2 Arch-Shaped TENGs 26</p> <p>2.2.3 Zig-Zag-Shaped TENGs 30</p> <p>2.2.4 Wavy-Shaped TENGs 33</p> <p>2.2.5 Tank-Shaped TENGs 33</p> <p>2.2.6 Rotor-Shaped TENGs 33</p> <p>2.3 Summary 37</p> <p>Abbreviations 37</p> <p>References 38</p> <p><b>3 Fabrication of Triboelectric Nanogenerators </b><b>41<br /></b><i>Bo Meng</i></p> <p>3.1 Mass Fabrication Technologies for Triboelectric Nanogenerators 41</p> <p>3.1.1 Soft Lithography 41</p> <p>3.1.2 Flexible Printed Circuit Manufacture 44</p> <p>3.1.3 Roll-to-Roll Manufacture 45</p> <p>3.1.4 3D Printing 46</p> <p>3.1.5 Textile Manufacture 49</p> <p>3.2 Performance Enhancement for Triboelectric Nanogenerators 50</p> <p>3.2.1 Plasma Treatment 51</p> <p>3.2.2 Wrinkle-Structured Surface 51</p> <p>3.2.3 Chemical Synthesis 53</p> <p>3.3 Summary 54</p> <p>Abbreviations 55</p> <p>References 55</p> <p><b>4 Characterization of Triboelectric Nanogenerators </b><b>59<br /></b><i>Yu Song</i></p> <p>4.1 Electrical Operating Cycles of Triboelectric Nanogenerators 60</p> <p>4.1.1 <i>V</i>–<i>Q </i>Plot and Its Characteristics 60</p> <p>4.1.2 Operating Cycles of Energy Output 61</p> <p>4.1.3 Measurements of Operating Cycles 64</p> <p>4.2 Standard and Figure of Merits for Quantifying Triboelectric Nanogenerators 66</p> <p>4.2.1 Figure of Merits of Triboelectric Nanogenerators 66</p> <p>4.2.2 Structural Figure of Merits of Triboelectric Nanogenerators 67</p> <p>4.2.3 Material Figure of Merit for Triboelectric Nanogenerators 70</p> <p>4.3 Summary 73</p> <p>Abbreviations 74</p> <p>References 74</p> <p><b>5 Power Management of Triboelectric Nanogenerators </b><b>77<br /></b><i>Xiaoliang Cheng</i></p> <p>5.1 Theoretical Analysis of Power Transmittance of TENGs 77</p> <p>5.1.1 Resistive Load Characteristics of TENGs 78</p> <p>5.1.2 Capacitive Load Characteristics of TENGs 78</p> <p>5.2 The Progress in TENG Power Management 81</p> <p>5.2.1 Using Inductive Transformers 81</p> <p>5.2.2 Using Capacitive Transformers 82</p> <p>5.2.3 Using LC Oscillation Circuit 83</p> <p>5.3 Summary 90</p> <p>Abbreviations 90</p> <p>References 91</p> <p><b>Part II Approaches to Flexible and Stretchable Device </b><b>95</b></p> <p><b>6 Overview of Flexible and Stretchable Approaches </b><b>97<br /></b><i>Mengdi Han</i></p> <p>6.1 Intrinsically Flexible or Stretchable Materials 97</p> <p>6.1.1 Nanomaterials in Different Dimensions 97</p> <p>6.1.2 Organic Materials 100</p> <p>6.1.3 Other Materials 102</p> <p>6.2 Structural Designs for Flexible and Stretchable Electronics 103</p> <p>6.2.1 Structural Design for Flexible Electronics 103</p> <p>6.2.2 2D Structural Design for Stretchable Electronics 105</p> <p>6.2.3 3D Structural Design for Stretchable Electronics 107</p> <p>6.3 Summary 107</p> <p>Abbreviations 107</p> <p>References 108</p> <p><b>7 Flexible and Stretchable Devices from 0D Nanomaterials </b><b>113<br /></b><i>Zongming Su</i></p> <p>7.1 0D Nanomaterials 114</p> <p>7.1.1 Quantum Dots 114</p> <p>7.1.2 Carbon Quantum Dots 115</p> <p>7.1.3 Gold Nanoparticles 116</p> <p>7.2 Thin Films Using 0D Nanomaterials 117</p> <p>7.2.1 Casting 117</p> <p>7.2.2 Dip Coating 118</p> <p>7.2.3 Langmuir–Blodgett Deposition 120</p> <p>7.3 Patterning Methods and Applications 121</p> <p>7.3.1 Screen Printing 121</p> <p>7.3.2 Inkjet Printing 121</p> <p>7.3.3 Microcontact Printing 122</p> <p>7.4 Applications of 0D Nanomaterials 123</p> <p>7.4.1 Electrodes 124</p> <p>7.4.2 Light-Emitting Diodes 125</p> <p>7.4.3 Transistors 125</p> <p>7.5 Summary 128</p> <p>Abbreviations 128</p> <p>References 129</p> <p><b>8 Flexible and Stretchable Devices from 1D Nanomaterials </b><b>133<br /></b><i>Liming Miao</i></p> <p>8.1 Carbon Nanotubes 133</p> <p>8.1.1 Fabrication Methods for CNTs 133</p> <p>8.1.1.1 CNT-Based Bulk Materials 134</p> <p>8.1.1.2 CNT-Based Surface Materials 134</p> <p>8.1.2 Application of CNTs 136</p> <p>8.2 ZnO Nanowires 138</p> <p>8.2.1 Synthesis of ZnO Nanowires 139</p> <p>8.2.2 Applications of ZnO Nanowires 141</p> <p>8.3 Ag Nanowires 142</p> <p>8.3.1 Fabrication Methods for Ag Nanowires 142</p> <p>8.3.2 Applications of Ag Nanowires 143</p> <p>8.4 Summary 145</p> <p>Abbreviations 145</p> <p>References 146</p> <p><b>9 Flexible and Stretchable Devices from 2D Nanomaterials </b><b>149<br /></b><i>Jinxin Zhang</i></p> <p>9.1 2D Nanomaterials 149</p> <p>9.1.1 Graphene 150</p> <p>9.1.2 TMDs 151</p> <p>9.1.3 Boron Nitride 151</p> <p>9.2 Synthesis of Graphene 152</p> <p>9.2.1 Micromechanical Exfoliation 152</p> <p>9.2.2 Epitaxial Growth 153</p> <p>9.2.3 Chemical Exfoliation 153</p> <p>9.3 Graphene Transfer 154</p> <p>9.3.1 Mechanical Exfoliation 154</p> <p>9.3.2 Polymer-Assisted Transfer 154</p> <p>9.3.3 Roll-to-Roll Transfer 156</p> <p>9.3.4 “Transfer-Free” Method 156</p> <p>9.4 Applications of Graphene 157</p> <p>9.4.1 Flexible and Stretchable Transparent Electrodes 157</p> <p>9.4.2 Nanogenerators 158</p> <p>9.5 Summary 160</p> <p>Abbreviations 161</p> <p>References 161</p> <p><b>10 Flexible and Stretchable Devices from Unconventional 3D Structural Design </b><b>165<br /></b><i>Hangbo Zhao and Mengdi Han</i></p> <p>10.1 Stretchable 3D Ribbon and Membrane Structures Formed by Basic Buckling 165</p> <p>10.1.1 3D Nanoribbons 166</p> <p>10.1.2 3D Nanomembranes 167</p> <p>10.1.3 3D Bridge-Island Structures 167</p> <p>10.2 Deterministic 3D Assembly 167</p> <p>10.2.1 Basic Approach of Deterministic 3D Assembly 169</p> <p>10.2.2 3D Kirigami Structure in Micro-/Nanomembranes 172</p> <p>10.2.3 Buckling Control Assisted by Stress and Strain Engineering 172</p> <p>10.2.4 Multilayer 3D Structures 173</p> <p>10.2.5 Freestanding 3D Structures 175</p> <p>10.2.6 Morphable 3D Structures by Multistable Buckling Mechanics 176</p> <p>10.3 Flexible and Stretchable Devices from 3D Assembly 177</p> <p>10.3.1 Electronic Devices and Systems 177</p> <p>10.3.2 Optical and Optoelectronic Devices 177</p> <p>10.3.3 Scaffolds as Interfaces with Biological Systems 178</p> <p>10.4 Summary 180</p> <p>Abbreviations 181</p> <p>References 181</p> <p><b>11 Flexible and Stretchable Devices from Other Materials </b><b>183<br /></b><i>Haotian Chen</i></p> <p>11.1 Polymer-Based Conductive Materials 183</p> <p>11.1.1 PANI 184</p> <p>11.1.2 PPy 185</p> <p>11.1.3 PEDOT : PSS 185</p> <p>11.1.4 Organic Nanowires 185</p> <p>11.2 Composite-Based Conductive Materials 189</p> <p>11.2.1 Conductive Fillers Blended into Stretchable Elastomers 189</p> <p>11.2.2 Conductive Film Embedded into Stretchable Elastomer 191</p> <p>11.3 Textile-Based Conductive Materials 195</p> <p>11.3.1 Fiber-Based Conductive Materials 195</p> <p>11.3.2 Textile-Based Conductive Materials 196</p> <p>11.4 Summary 199</p> <p>Abbreviations 199</p> <p>References 200</p> <p><b>Part III Self-Powered Smart System </b><b>203</b></p> <p><b>12 Active Sensors </b><b>205<br /></b><i>Xuexian Chen</i></p> <p>12.1 Active Touch Sensors 205</p> <p>12.1.1 Static and Dynamic Pressure Sensor 206</p> <p>12.1.2 Tactile Imaging Sensor 206</p> <p>12.1.3 Single-Electrode Touch Sensor 207</p> <p>12.2 Active Vibration Sensors 210</p> <p>12.2.1 Vibration Sensor for Quantitative Amplitude Measurement 210</p> <p>12.2.2 Vibration Acceleration Sensor 212</p> <p>12.2.3 Vibration Direction Sensor 213</p> <p>12.2.4 Acoustic Sensor 213</p> <p>12.3 Active Motion Sensors 215</p> <p>12.3.1 Linear Displacement Sensor 215</p> <p>12.3.2 Angle Sensor 217</p> <p>12.3.3 Omnidirectional Tilt Sensor 217</p> <p>12.4 Active Chemical/Environmental Sensors 219</p> <p>12.4.1 Chemical Sensor 219</p> <p>12.4.2 UV Sensor 221</p> <p>12.5 Summary 222</p> <p>Abbreviations 222</p> <p>References 223</p> <p><b>13 Hybrid Sensing Technology </b><b>227<br /></b><i>Xiaosheng Zhang, Yanyuan Ba, and Mengdi Han</i></p> <p>13.1 Dual Hybrid Power Technology 227</p> <p>13.1.1 Triboelectric–Piezoelectric Nanogenerator 228</p> <p>13.1.2 Triboelectric–Photovoltaic Nanogenerator 231</p> <p>13.1.3 Triboelectric–Electromagnetic Nanogenerator 233</p> <p>13.2 Multiple Hybrid Power Technology 234</p> <p>13.2.1 Triple Hybrid Generators 234</p> <p>13.2.2 Four-Mechanism Hybrid Generators 235</p> <p>13.3 Hybrid Sensors and Applications 238</p> <p>13.3.1 Piezoelectric–Triboelectric Hybrid Sensors 239</p> <p>13.3.2 Electromagnetic–Triboelectric Hybrid Sensors 242</p> <p>13.3.3 Multiple Hybrid Sensors 247</p> <p>13.4 Summary 249</p> <p>Abbreviations 250</p> <p>References 251</p> <p><b>14 Smart Actuators </b><b>253<br /></b><i>Xiaosheng Zhang and Zhaohui Wu</i></p> <p>14.1 Actuators in Optics 254</p> <p>14.1.1 Laser Controller 254</p> <p>14.1.2 Tunable Optical Membranes 258</p> <p>14.2 Actuators in Biomedicine 261</p> <p>14.2.1 Bladder Illness Curation 261</p> <p>14.2.2 Drug Delivery 264</p> <p>14.3 Actuators in Industrial Application 267</p> <p>14.3.1 Electrospinning System 268</p> <p>14.3.2 Syringe Printing 270</p> <p>14.4 Actuators in Microfluidic Manipulation 272</p> <p>14.4.1 Droplet Motion Drive 272</p> <p>14.4.2 Microfluidic Transport 274</p> <p>14.5 Summary 276</p> <p>Abbreviations 276</p> <p>References 277</p> <p><b>15 Flexible and Stretchable Electronic Skin </b><b>281<br /></b><i>Mayue Shi and Hanxiang Wu</i></p> <p>15.1 Design of Electronic Skin 281</p> <p>15.2 Electronic Skin for Mechanical Sensing 285</p> <p>15.2.1 Pressure Sensing 285</p> <p>15.2.2 Sliding Sensing 288</p> <p>15.2.3 Bending Sensing 288</p> <p>15.2.4 Location Sensing 289</p> <p>15.2.5 Strain Sensing 290</p> <p>15.3 Electronic Skin for Physiological Sensing 294</p> <p>15.3.1 Multimodal Sensing 294</p> <p>15.3.2 Physiological Monitoring 296</p> <p>15.3.3 Signal Transmission 298</p> <p>15.3.4 Reliability 298</p> <p>15.4 Summary 301</p> <p>Abbreviations 301</p> <p>References 302</p> <p><b>Part IV Applications of Flexible and Stretchable Self-Powered Smart System </b><b>305</b></p> <p><b>16 All-in-One Self-Powered Microsystems </b><b>307<br /></b><i>Xiaosheng Zhang and Danliang Wen</i></p> <p>16.1 All-in-One Energy Harvester 308</p> <p>16.1.1 One-Structural Triple-mechanism Energy Harvester 309</p> <p>16.1.2 One-Structural Flexible Energy Harvester 310</p> <p>16.1.3 One-Structural Multi-mechanism Energy Harvester 312</p> <p>16.2 All-in-One Power Unit 316</p> <p>16.2.1 Connection of TENGs and Traditional Circuits 316</p> <p>16.2.2 Integration of TENGs and Flexible Supercapacitors 320</p> <p>16.3 All-in-One Self-Powered Microsystems 326</p> <p>16.3.1 All-Fiber-Based Self-Powered Microsystem 326</p> <p>16.3.2 All-in-One Self-charging Smart Bracelet 326</p> <p>16.3.3 Other Research of All-in-One Self-Powered Microsystems 327</p> <p>16.4 Summary 335</p> <p>Abbreviations 335</p> <p>References 336</p> <p><b>17 Applications in Biomedical Systems </b><b>339<br /></b><i>Cunman Liang and Mengdi Han</i></p> <p>17.1 Power Sources of Implantable Medical Devices 340</p> <p>17.1.1 Power Source for Pacemakers 340</p> <p>17.1.2 Power Source for Medical Lasers 342</p> <p>17.1.3 Hybrid Power Source for Medical Applications 344</p> <p>17.2 Active Monitoring 345</p> <p>17.2.1 Nanogenerators for Cardiac Monitoring 345</p> <p>17.2.2 Multifunctional Real-Time Monitoring 347</p> <p>17.2.3 Versatile Energy Conversion and Monitoring 350</p> <p>17.2.4 Self-Powered Wireless Body Sensor Network 352</p> <p>17.3 Self-Powered System for Electric Stimulation in Tissue Engineering 353</p> <p>17.3.1 Self-Powered Electrical-Stimulation-Assisted Neural Differentiation System 353</p> <p>17.3.2 Biodegradable TENG for in Vivo Short-Term Stimulation 354</p> <p>17.3.3 Absorbable Bioresorbable in Vivo Natural-Materials-Based TENGs 355</p> <p>17.4 Summary 356</p> <p>Abbreviations 357</p> <p>References 357</p> <p><b>18 Applications in Internet of Things and Artificial Intelligence </b><b>359<br /></b><i>Mayue Shi and Hanxiang Wu</i></p> <p>18.1 Applications in Internet of Things 359</p> <p>18.1.1 Internet of Things 359</p> <p>18.1.2 Self-Powered Sensing Nodes 360</p> <p>18.1.3 Wireless Communication 363</p> <p>18.1.4 Power Management Circuit 364</p> <p>18.2 Applications in Artificial Intelligence 367</p> <p>18.2.1 Artificial Intelligence 367</p> <p>18.2.2 Electronic Skin 368</p> <p>18.2.3 Robotic Prosthetics 371</p> <p>18.2.4 Human–Machine Interfaces 374</p> <p>18.3 Summary 376</p> <p>Abbreviations 376</p> <p>References 377</p> <p><b>19 Applications in Environmental Monitoring/Protection </b><b>379<br /></b><i>Hang Guo and Wei Tang</i></p> <p>19.1 Self-powered EnvironmentalMonitoring System 379</p> <p>19.1.1 Phenol Detection 380</p> <p>19.1.2 Dopamine Detection 382</p> <p>19.1.3 Heavy Metal Ion Detection 383</p> <p>19.2 Self-powered Environmental Protection 384</p> <p>19.2.1 Degradation of AAB 384</p> <p>19.2.2 Degradation of Methyl Orange (MO) System 384</p> <p>19.2.3 Removing Fly Ash and SO<sub>2</sub> 385</p> <p>19.2.4 Seawater Desalination (SD) and Electrolysis (SE) System 386</p> <p>19.3 Self-powered Electrochemistry System 388</p> <p>19.3.1 Water Electrolysis Units 388</p> <p>19.3.2 Electrochemical Polymerization System 389</p> <p>19.3.3 Electrochemical Reduction System 390</p> <p>19.4 Self-powered Anticorrosion 391</p> <p>19.4.1 Driven by Mechanical Energy 392</p> <p>19.4.2 Driven by Wave Energy 393</p> <p>19.5 Summary 394</p> <p>Abbreviations 394</p> <p>References 395</p> <p>Index 399</p>
<p><b><i>Mengdi Han, PhD,</i></b> <i>is Postdoctoral Fellow in the Center for Bio-Integrated Electronics at Northwestern University, USA. His research work focuses on energy harvesting, flexible and stretchable electronics, bio-integrated electronics, and 3D electronic networks.</i> <p><b><i>Xiaosheng Zhang, PhD,</i></b> <i>is Professor at University of Electronic Science and Technology of China (UESTC). His research focuses on micro- and nanoelectronic science and technology, especially applications for self-powered electronics.</i> <p><b><i>Haixia Zhang, PhD,</i></b><i> is Professor in the School of Electronics Engineering and Computer Science at Peking University, China. Her research focuses on novel manufacturing and design techniques with emphasis on energy devices and systems.</i>
<p><b>Presents a comprehensive overview of flexible triboelectric nanogenerators for smart applications</b> <p>Triboelectric nanogenerators are emerging technologies for self-powered systems. They transform environmental mechanical energy to electric power and have been demonstrated as a renewable and sustainable power source for diverse applications including energy conversion and healthcare. Flexible and stretchable triboelectric nanogenerators have big potential for human interface applications, such as health monitoring and artificial intelligence. <p><i>Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-powered Systems</i> is presented in four parts. It starts with the fundamentals of triboelectric nanogenerators (TENGs), looking at the materials, fabrication, mechanics, and power management of them. The book then examines fabrication technologies to achieve flexible and stretchable, covering ultra-thin films, as well as porous, sponges-based, and 3D assembling structures. Self-powered flexible microsystems such as smart sensors, smart actuators, and all-in-one smart systems are introduced next. The book finishes by presenting several application examples, including TENG-based active sensors, TENG-powered actuators, artificial intelligence, and integrated systems. <ul> <li>Triboelectric nanogenerators have diverse applications for current energy and healthcare challenges, such as energy conversion, sensors, actuators, and wearable devices</li> <li>Covers fabrication technologies to achieve flexible and stretchable, as well as application examples including healthcare systems, artificial intelligence, IoT, advanced sports, and consumer electronics</li> <li>Presents every key reaction, including Diels-Alder, CH Insertions, Metal-catalytic coupling-reactions, and many more</li> <li>Of high interest for materials scientists, energy scientists, and electrical and bio engineers in academia and industry</li> </ul> <p><i>Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-powered Systems</i> is an ideal book for materials scientists, engineering scientists, electronics engineers, bioengineers, and sensor developers.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €