Details

Protein Engineering


Protein Engineering

Tools and Applications
Advanced Biotechnology 1. Aufl.

von: Huimin Zhao, Sang Yup Lee, Jens Nielsen, Gregory Stephanopoulos

153,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 02.08.2021
ISBN/EAN: 9783527815098
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology</b></p> <p><i>Protein Engineering: Tools and Applications</i> is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications.</p> <p>The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book:</p> <ul> <li>Covers technologies and methodologies used in protein engineering</li> <li>Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications</li> <li>Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology</li> <li>Presents cutting edge advances in the continuously evolving field of protein engineering</li> </ul> <p>Written for students and professionals of bioengineering, biotechnology, biochemistry, <i>Protein Engineering: Tools and Applications</i> offers an essential resource to the design strategies in protein engineering and reviews recent applications.</p>
<p><b>Part I Directed Evolution </b><b>1</b></p> <p><b>1 Continuous Evolution of Proteins <i>In Vivo </i></b><b>3<br /></b><i>Alon Wellner, Arjun Ravikumar, and Chang C. Liu</i></p> <p>1.1 Introduction 3</p> <p>1.2 Challenges in Achieving <i>In Vivo </i>Continuous Evolution 5</p> <p>1.3 Phage-Assisted Continuous Evolution (PACE) 10</p> <p>1.4 Systems That Allow <i>In Vivo </i>Continuous Directed Evolution 13</p> <p>1.4.1 Targeted Mutagenesis in <i>E. coli </i>with Error-Prone DNA Polymerase I 13</p> <p>1.4.2 Yeast Systems That Do Not Use Engineered DNA Polymerases for Mutagenesis 16</p> <p>1.4.3 Somatic Hypermutation as a Means for Targeted Mutagenesis of GOIs 18</p> <p>1.4.4 Orthogonal DNA Replication (OrthoRep) 20</p> <p>1.5 Conclusion 22</p> <p>References 22</p> <p><b>2 <i>In Vivo </i>Biosensors for Directed Protein Evolution </b><b>29<br /></b><i>Song Buck Tay and Ee Lui Ang</i></p> <p>2.1 Introduction 29</p> <p>2.2 Nucleic Acid-Based <i>In Vivo </i>Biosensors for Directed Protein Evolution 32</p> <p>2.2.1 RNA-Type Biosensors 32</p> <p>2.2.2 DNA-Type Biosensors 35</p> <p>2.3 Protein-Based <i>In Vivo </i>Biosensors for Directed Protein Evolution 37</p> <p>2.3.1 Transcription Factor-Type Biosensors 37</p> <p>2.3.2 Enzyme-Type Biosensors 41</p> <p>2.4 Characteristics of Biosensors for <i>In Vivo </i>Directed Protein Evolution 44</p> <p>2.5 Conclusions and Future Perspectives 45</p> <p>Acknowledgments 46</p> <p>References 46</p> <p><b>3 High-Throughput Mass Spectrometry Complements Protein Engineering </b><b>57<br /></b><i>Tong Si, Pu Xue, Kisurb Choe, Huimin Zhao, and Jonathan V. Sweedler</i></p> <p>3.1 Introduction 57</p> <p>3.2 Procedures and Instrumentation for MS-Based Protein Assays 59</p> <p>3.3 Technology Advances Focusing on Throughput Improvement 62</p> <p>3.4 Applications of MS-Based Protein Assays: Summary 63</p> <p>3.4.1 Applications of MS-Based Assays: Protein Analysis 64</p> <p>3.4.2 Applications of MS-Based Assays: Protein Engineering 66</p> <p>3.5 Conclusions and Perspectives 68</p> <p>Acknowledgments 68</p> <p>References 69</p> <p><b>4 Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution </b><b>81<br /></b><i>Maryam Raeeszadeh-Sarmazdeh and Wilfred Chen</i></p> <p>4.1 Cell Display Methods 81</p> <p>4.1.1 Phage Display 81</p> <p>4.1.2 Bacterial Display Systems 83</p> <p>4.1.3 Yeast Surface Display 84</p> <p>4.1.4 Mammalian Display 85</p> <p>4.2 Selection Methods and Strategies 86</p> <p>4.2.1 High-Throughput Cell Screening 86</p> <p>4.2.1.1 Panning 86</p> <p>4.2.1.2 FACS 86</p> <p>4.2.1.3 MACS 87</p> <p>4.2.2 Selection Strategies 88</p> <p>4.2.2.1 Competitive Selection (Counter Selection) 88</p> <p>4.2.2.2 Negative/Positive Selection 89</p> <p>4.3 Modifications of Cell Surface Display Systems 89</p> <p>4.3.1 Modification of YSD for Enzyme Engineering 89</p> <p>4.3.2 Yeast Co-display System 91</p> <p>4.3.3 Surface Display of Multiple Proteins 91</p> <p>4.4 Recent Advances to Expand Cell-Display Directed Evolution Techniques 93</p> <p>4.4.1 μSCALE (Microcapillary Single-Cell Analysis and Laser Extraction) 93</p> <p>4.4.2 Combining Cell Surface Display and Next-Generation Sequencing 94</p> <p>4.4.3 PACE (Phage-Assisted Continuous Evolution) 94</p> <p>4.5 Conclusion and Outlook 96</p> <p>References 97</p> <p><b>5 Iterative Saturation Mutagenesis for Semi-rational Enzyme Design </b><b>105<br /></b><i>Ge Qu, Zhoutong Sun, and Manfred T. Reetz</i></p> <p>5.1 Introduction 105</p> <p>5.2 Recent Methodology Developments in ISM-Based Directed Evolution 108</p> <p>5.2.1 Choosing Reduced Amino Acid Alphabets Properly 109</p> <p>5.2.1.1 Limonene Epoxide Hydrolase as the Catalyst in Hydrolytic Desymmetrization 109</p> <p>5.2.1.2 Alcohol Dehydrogenase TbSADH as the Catalyst in Asymmetric Transformation of Difficult-to-Reduce Ketones 110</p> <p>5.2.1.3 P450-BM3 as the Chemo- and Stereoselective Catalyst in a Whole-Cell Cascade Sequence 112</p> <p>5.2.1.4 Multi-parameter Evolution Aided by Mutability Landscaping 115</p> <p>5.2.2 Further Methodology Developments of CAST/ISM 117</p> <p>5.2.2.1 Advances Based on Novel Molecular Biological Techniques and Computational Methods 117</p> <p>5.2.2.2 Advances Based on Solid-Phase Chemical Synthesis of SM Libraries 118</p> <p>5.3 B-FIT as an ISM Method for Enhancing Protein Thermostability 120</p> <p>5.4 Learning from CAST/ISM-Based Directed Evolution 121</p> <p>5.5 Conclusions and Perspectives 121</p> <p>Acknowledgment 124</p> <p>References 124</p> <p><b>Part II Rational and Semi-Rational Design </b><b>133</b></p> <p><b>6 Data-driven Protein Engineering </b><b>135<br /></b><i>Jonathan Greenhalgh, Apoorv Saraogee, and Philip A. Romero</i></p> <p>6.1 Introduction 135</p> <p>6.2 The Data Revolution in Biology 136</p> <p>6.3 Statistical Representations of Protein Sequence, Structure, and Function 138</p> <p>6.3.1 Representing Protein Sequences 138</p> <p>6.3.2 Representing Protein Structures 140</p> <p>6.4 Learning the Sequence-Function Mapping from Data 141</p> <p>6.4.1 Supervised Learning (Regression/Classification) 141</p> <p>6.4.2 Unsupervised/Semisupervised Learning 144</p> <p>6.5 Applying Statistical Models to Engineer Proteins 145</p> <p>6.6 Conclusions and Future Outlook 147</p> <p>References 148</p> <p><b>7 Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies </b><b>153<br /></b><i>Subrata Pramanik, Francisca Contreras, Mehdi D. Davari, and Ulrich Schwaneberg</i></p> <p>7.1 Introduction 153</p> <p>7.2 Protein Engineering Strategies 154</p> <p>7.2.1 Computer-Aided Rational Design 155</p> <p>7.2.1.1 FRESCO 155</p> <p>7.2.1.2 FoldX 157</p> <p>7.2.1.3 CNA 158</p> <p>7.2.1.4 PROSS 159</p> <p>7.2.1.5 ProSAR 160</p> <p>7.2.2 Knowledge Based Directed Evolution 161</p> <p>7.2.2.1 Iterative Saturation Mutagenesis (ISM) 161</p> <p>7.2.2.2 Mutagenic Organized Recombination Process by Homologous <i>In Vivo </i>Grouping (MORPHING) 161</p> <p>7.2.2.3 Knowledge Gaining Directed Evolution (KnowVolution) 162</p> <p>7.3 Conclusions and Future Perspectives 171</p> <p>Acknowledgments 171</p> <p>References 171</p> <p><b>8 Engineering Artificial Metalloenzymes </b><b>177<br /></b><i>Kevin A. Harnden, Yajie Wang, Lam Vo, Huimin Zhao, and Yi Lu</i></p> <p>8.1 Introduction 177</p> <p>8.2 Rational Design 177</p> <p>8.2.1 Rational Design of Metalloenzymes Using <i>De Novo </i>Designed Scaffolds 177</p> <p>8.2.2 Rational Design of Metalloenzymes Using Native Scaffolds 179</p> <p>8.2.2.1 Redesign of Native Proteins 179</p> <p>8.2.2.2 Cofactor Replacement in Native Proteins 181</p> <p>8.2.2.3 Covalent Anchoring in Native Protein 184</p> <p>8.2.2.4 Supramolecular Anchoring in Native Protein 187</p> <p>8.3 Engineering Artificial Metalloenzyme by Directed Evolution in Combination with Rational Design 188</p> <p>8.3.1 Directed Evolution of Metalloenzymes Using <i>De Novo </i>Designed Scaffolds 188</p> <p>8.3.2 Directed Evolution of Metalloenzymes Using Native Scaffolds 189</p> <p>8.3.2.1 Cofactor Replacement in Native Proteins 189</p> <p>8.3.2.2 Covalent Anchoring in Native Protein 192</p> <p>8.3.2.3 Non-covalent Anchoring in Native Proteins 194</p> <p>8.4 Summary and Outlook 200</p> <p>Acknowledgment 201</p> <p>References 201</p> <p><b>9 Engineered Cytochromes P450 for Biocatalysis </b><b>207<br /></b><i>Hanan Alwaseem and Rudi Fasan</i></p> <p>9.1 Cytochrome P450 Monooxygenases 207</p> <p>9.2 Engineered Bacterial P450s for Biocatalytic Applications 210</p> <p>9.2.1 Oxyfunctionalization of Small Organic Substrates 211</p> <p>9.2.2 Late-Stage Functionalization of Natural Products 220</p> <p>9.2.3 Synthesis of Drug Metabolites 224</p> <p>9.3 High-throughput Methods for Screening Engineered P450s 227</p> <p>9.4 Engineering of Hybrid P450 Systems 229</p> <p>9.5 Engineered P450s with Improved Thermostability and Solubility 230</p> <p>9.6 Conclusions 231</p> <p>Acknowledgments 232</p> <p>References 232</p> <p><b>Part III Applications in Industrial Biotechnology </b><b>243</b></p> <p><b>10 Protein Engineering Using Unnatural Amino Acids </b><b>245<br /></b><i>Yang Yu, Xiaohong Liu, and Jiangyun Wang</i></p> <p>10.1 Introduction 245</p> <p>10.2 Methods for Unnatural Amino Acid Incorporation 246</p> <p>10.3 Applications of Unnatural Amino Acids in Protein Engineering 247</p> <p>10.3.1 Enhancing Stability 248</p> <p>10.3.2 Mechanistic Study Using Spectroscopic Methods 248</p> <p>10.3.3 Tuning Catalytic Activity 250</p> <p>10.3.4 Tuning Selectivity 252</p> <p>10.3.5 Enzyme Design 252</p> <p>10.3.6 Protein Engineering Toward a Synthetic Life 255</p> <p>10.4 Outlook 256</p> <p>10.5 Conclusions 258</p> <p>References 258</p> <p><b>11 Application of Engineered Biocatalysts for the Synthesis of Active Pharmaceutical Ingredients (APIs) </b><b>265<br /></b><i>Juan Mangas-Sanchez, Sebastian C. Cosgrove, and Nicholas J. Turner</i></p> <p>11.1 Introduction 265</p> <p>11.1.1 Transferases 266</p> <p>11.1.1.1 Transaminases 266</p> <p>11.1.2 Oxidoreductases 267</p> <p>11.1.2.1 Ketoreductases 267</p> <p>11.1.2.2 Amino Acid Dehydrogenases 271</p> <p>11.1.2.3 Cytochrome P450 Monoxygenases 272</p> <p>11.1.2.4 Baeyer–Villiger Monoxygenases 273</p> <p>11.1.2.5 Amine Oxidases 274</p> <p>11.1.2.6 Hydroxylases 276</p> <p>11.1.2.7 Imine Reductases 276</p> <p>11.1.3 Lyases 278</p> <p>11.1.3.1 Ammonia Lyases 278</p> <p>11.1.4 Isomerases 278</p> <p>11.1.5 Hydrolases 279</p> <p>11.1.5.1 Esterases 279</p> <p>11.1.5.2 Haloalkane Dehalogenase 279</p> <p>11.1.6 Multi-enzyme Cascade 281</p> <p>11.2 Conclusions 282</p> <p>References 287</p> <p><b>12 Directing Evolution of the Fungal Ligninolytic Secretome </b><b>295<br /></b><i>Javier Viña-Gonzalez and Miguel Alcalde</i></p> <p>12.1 The Fungal Ligninolytic Secretome 295</p> <p>12.2 Functional Expression in Yeast 297</p> <p>12.2.1 The Evolution of Signal Peptides 297</p> <p>12.2.2 Secretion Mutations in Mature Protein 300</p> <p>12.2.3 The Importance of Codon Usage 301</p> <p>12.3 Yeast as a Tool-Box in the Generation of DNA Diversity 302</p> <p>12.4 Bringing Together Evolutionary Strategies and Computational Tools 305</p> <p>12.5 High-Throughput Screening (HTS) Assays for Ligninase Evolution 306</p> <p>12.6 Conclusions and Outlook 309</p> <p>Acknowledgments 309</p> <p>References 310</p> <p><b>13 Engineering Antibody-Based Therapeutics: Progress and Opportunities </b><b>317<br /></b><i>Annalee W. Nguyen and Jennifer A. Maynard</i></p> <p>13.1 Introduction 317</p> <p>13.2 Antibody Formats 318</p> <p>13.2.1 Human IgG1 Structure 318</p> <p>13.2.2 Antibody-Drug Conjugates 319</p> <p>13.2.3 Bispecific Antibodies 320</p> <p>13.2.4 Single Domain Antibodies 321</p> <p>13.2.5 Chimeric Antigen Receptors 321</p> <p>13.3 Antibody Discovery 322</p> <p>13.3.1 Antibody Target Identification 322</p> <p>13.3.1.1 Cancer and Autoimmune Disease Targets 323</p> <p>13.3.1.2 Infectious Disease Targets 323</p> <p>13.3.2 Screening for Target-Binding Antibodies 324</p> <p>13.3.2.1 Synthetic Library Derived Antibodies 324</p> <p>13.3.2.2 Host-Derived Antibodies 325</p> <p>13.3.2.3 Immunization 325</p> <p>13.3.2.4 Pairing the Light and Heavy Variable Regions 326</p> <p>13.3.2.5 Humanization 327</p> <p>13.3.2.6 Hybrid Approaches to Antibody Discovery 328</p> <p>13.4 Therapeutic Optimization of Antibodies 328</p> <p>13.4.1 Serum Half-Life 328</p> <p>13.4.1.1 Antibody Half-Life Extension 329</p> <p>13.4.1.2 Antibody Half-Life Reduction 331</p> <p>13.4.1.3 Effect of Half-Life Modification on Effector Functions 331</p> <p>13.4.2 Effector Functions 331</p> <p>13.4.2.1 Effector Function Considerations for Cancer Therapeutics 332</p> <p>13.4.2.2 Effector Function Considerations for Infectious Disease Prophylaxis and Therapy 333</p> <p>13.4.2.3 Effector Function Considerations for Treating Autoimmune Disease 334</p> <p>13.4.2.4 Approaches to Engineering the Effector Functions of the IgG1 Fc 334</p> <p>13.4.3 Tissue Localization 335</p> <p>13.4.4 Immunogenicity 335</p> <p>13.4.4.1 Reducing T-Cell Recognition 336</p> <p>13.4.4.2 Reducing Aggregation 336</p> <p>13.5 Manufacturability of Antibodies 336</p> <p>13.5.1 Increasing Antibody Yield 337</p> <p>13.5.1.1 Codon Usage 337</p> <p>13.5.1.2 Signal Peptide Optimization 337</p> <p>13.5.1.3 Expression Optimization 338</p> <p>13.5.2 Alternative Production Methods 338</p> <p>13.6 Conclusions 339</p> <p>Acknowledgments 339</p> <p>References 339</p> <p><b>14 Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors </b><b>353<br /></b><i>Andrew J. Hou and Yvonne Y. Chen</i></p> <p>14.1 Introduction 353</p> <p>14.2 Metrics to Evaluate CAR-T Cell Function 354</p> <p>14.3 Antigen-Recognition Domain 356</p> <p>14.3.1 Tuning the Antigen-Recognition Domain to Manage Toxicity 356</p> <p>14.3.2 Incorporation of Multiple Antigen-Recognition Domains to Engineer “Smarter” CARs 356</p> <p>14.3.3 Novel Antigen-Recognition Domains to Enhance CAR Modularity 359</p> <p>14.3.4 Engineering CARs that Target Soluble Factors 360</p> <p>14.4 Extracellular Spacer 360</p> <p>14.5 Transmembrane Domain 362</p> <p>14.6 Signaling Domain 362</p> <p>14.6.1 First- and Second-Generation CARs 362</p> <p>14.6.2 Combinatorial Co-stimulation 363</p> <p>14.6.3 Other Co-stimulatory Domains: ICOS, OX40, TLR2 364</p> <p>14.6.4 Additional Considerations for CAR Signaling Domains 364</p> <p>14.7 High-Throughput CAR Engineering 366</p> <p>14.8 Novel Receptor Modalities 367</p> <p>References 369</p> <p><b>Part IV Applications in Medical Biotechnology </b><b>377</b></p> <p><b>15 Development of Novel Cellular Imaging Tools Using Protein Engineering </b><b>379<br /></b><i>Praopim Limsakul, Chi-Wei Man, Qin Peng, Shaoying Lu, and Yingxiao Wang</i></p> <p>15.1 Introduction 379</p> <p>15.2 Cellular Imaging Tools Developed by Protein Engineering 380</p> <p>15.2.1 Fluorescent Proteins 380</p> <p>15.2.1.1 The FP Color Palette 380</p> <p>15.2.1.2 Photocontrollable Fluorescent Proteins 381</p> <p>15.2.1.3 Other Engineered Fluorescent Proteins 383</p> <p>15.2.2 Antibodies and Protein Scaffolds 383</p> <p>15.2.2.1 Antibodies 383</p> <p>15.2.2.2 Antibody-Like Protein Scaffolds 384</p> <p>15.2.2.3 Directed Evolution 384</p> <p>15.2.3 Genetically Encoded Non-fluorescent Protein Tags 385</p> <p>15.3 Application in Cellular Imaging 386</p> <p>15.3.1 Cell Biology Applications 386</p> <p>15.3.1.1 Localization 386</p> <p>15.3.1.2 Cell Signaling 387</p> <p>15.3.2 Application in Diagnostics and Medicine 390</p> <p>15.3.2.1 Detection 390</p> <p>15.3.2.2 Screening for Drugs 392</p> <p>15.4 Conclusion and Perspectives 393</p> <p>References 394</p> <p>Index 403</p>
Dr. Huimin Zhao is the Steven L. Miller Chair of chemical and biomolecular engineering, and professor of chemistry, biochemistry, biophysics, and bioengineering at the University of Illinois at Urbana-Champaign (UIUC). He received his B.S. degree in Biology from the University of Science and Technology of China in 1992 and his Ph.D. degree in Chemistry from the California Institute of Technology in 1998 under the guidance of Dr. Frances Arnold. Prior to joining UIUC in 2000, he was a project leader at the Industrial Biotechnology Laboratory of the Dow Chemical Company. He was promoted to full professor in 2008. Dr. Zhao served as a consultant for over 10 companies such as Pfizer, Maxygen, BP, Gevo, and zuChem, and a Scientific Advisory Board member of Gevo, Myriant Technologies, Toulouse White Biotechnology (TWB) and AgriMetis. He was a member of National Academies' study group on Industrialization of Biology: A Roadmap to Accelerate Advanced Manufacturing of Chemicals. Dr. Zhao has authored and co-authored over 260 research articles and over 20 issued and pending patent applications with several being licensed by industry. In addition, he has given plenary, keynote or invited lectures in over 290 international meetings, universities, industries, and research institutes. His primary research interests are in the development and applications of synthetic biology tools to address society's most daunting challenges in health, energy, and sustainability, and in the fundamental aspects of enzyme catalysis, cell metabolism, and gene regulation.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €