Details

Organosilicon Chemistry


Organosilicon Chemistry

Novel Approaches and Reactions
1. Aufl.

von: Tamejiro Hiyama, Martin Oestreich

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 05.11.2019
ISBN/EAN: 9783527814770
Sprache: englisch
Anzahl Seiten: 568

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides a unique summary of important catalytic reactions in the presence of silicon <br> <br> A must-have for all synthetic chemists, this book summarizes all of the important developments in the application of organosilicon compounds in organic synthesis and catalysis. Edited by two world leaders in the field, it describes different approaches and covers a broad range of reactions, e.g. catalytic generation of silicon nucleophiles, Si-H Bond activation, C-H bond silylation, silicon-based cross-coupling reactions, and hydrosilylation in the presence of earth-abundant metals. <br> <br> In addition to the topics covered above, Organosilicon Chemistry: Novel Approaches and Reactions features chapters that look at Lewis base activation of silicon Lewis acids, silylenes as ligands in catalysis, and chiral silicon molecules. <br> <br> -The first book about this topic in decades, covering a broad range of reactions <br> -Covers new approaches and novel catalyst systems that have been developed in recent years <br> -Written by well-known, international experts in the areas of organometallic silicon chemistry and organosilicon cross-coupling reactions <br> <br> Organosilicon Chemistry: Novel Approaches and Reactions is an indispensable source of information for synthetic chemists in academia and industry, working in the field of organic synthesis, catalysis, and main-group chemistry. <br>
<p>Foreword xiii</p> <p>Preface xv</p> <p><b>1 Catalytic Generation of Silicon Nucleophiles 1<br /></b><i>Koji Kubota and Hajime Ito</i></p> <p>1.1 Introduction 1</p> <p>1.2 Silicon Nucleophiles with Copper Catalysts 2</p> <p>1.2.1 Copper-Catalyzed Nucleophilic Silylation with Disilanes 2</p> <p>1.2.1.1 Silylation of α,β-Unsaturated Carbonyl Compounds 2</p> <p>1.2.1.2 Silylation of Alkylidene Malonates 3</p> <p>1.2.1.3 Silylation of Allylic Carbamates 3</p> <p>1.2.2 Copper-Catalyzed Nucleophilic Silylation with Silylboronate 4</p> <p>1.2.2.1 Silicon–Boron Bond Activation with Copper Alkoxide 4</p> <p>1.2.2.2 Silylation of α,β-Unsaturated Carbonyl Compounds 4</p> <p>1.2.2.3 Catalytic Allylic Silylation 7</p> <p>1.2.2.4 Catalytic Silylation of Imines 9</p> <p>1.2.2.5 Catalytic Silylation of Aldehydes 9</p> <p>1.2.2.6 Catalytic Synthesis of Acylsilanes 11</p> <p>1.2.2.7 Silylative Carboxylation with CO<sub>2</sub> 11</p> <p>1.2.2.8 CO<sub>2</sub> Reduction via Silylation 13</p> <p>1.2.2.9 Silyl Substitution of Alkyl Electrophiles 13</p> <p>1.2.2.10 Decarboxylative Silylation 14</p> <p>1.2.2.11 Silylative Cyclization 15</p> <p>1.2.2.12 Silylative Allylation of Ketones 15</p> <p>1.2.2.13 Silylation of Alkynes 16</p> <p>1.2.2.14 Propargylic Substitution 19</p> <p>1.2.3 Copper-Catalyzed Nucleophilic Silylation with Silylzincs 20</p> <p>1.3 Silicon Nucleophiles with Rhodium Catalysts 21</p> <p>1.3.1 Rhodium-Catalyzed Nucleophilic Silylation with Disilanes 21</p> <p>1.3.2 Rhodium-Catalyzed Nucleophilic Silylation with Silylboronates 21</p> <p>1.3.2.1 Conjugate Silylation 21</p> <p>1.3.2.2 Coupling between Propargylic Carbonates to Form Allenylsilanes 22</p> <p>1.4 Silicon Nucleophiles with Nickel Catalysts 22</p> <p>1.4.1 Nickel-Catalyzed Nucleophilic Silylation with Alkyl Electrophiles 22</p> <p>1.5 Silicon Nucleophiles with Lewis Base Catalysts 23</p> <p>1.5.1 N-Heterocyclic Carbene-Catalyzed Nucleophilic 1,4-Silylation 23</p> <p>1.5.2 Alkoxide Base–Catalyzed 1,2-Silaboration 24</p> <p>1.5.3 Phosphine-Catalyzed 1,2-Silaboration 24</p> <p>1.6 Closing Remarks 25</p> <p>Abbreviations 25</p> <p>References 26</p> <p><b>2 Si─H Bond Activation by Main-Group Lewis Acids 33<br /></b><i>Dieter Weber and Michel R. Gagné</i></p> <p>2.1 Introduction to Silanes and the Si<b>─</b>H bond 33</p> <p>2.1.1 Overview of the Discovery and the History of Silanes 33</p> <p>2.1.2 A Comparison of Hydrocarbons and Hydrosilicons 34</p> <p>2.1.3 Stability of the Silicon–Hydrogen Bond 35</p> <p>2.1.4 The Silylium Ion 35</p> <p>2.2 The Activation of Si─H Bonds by Boron Lewis Acids 36</p> <p>2.2.1 Tris(pentafluorophenyl)borane (BCF) 36</p> <p>2.2.2 The Catalytic Activation of Si─H Bonds by BCF and Other Boranes 36</p> <p>2.2.2.1 The Mechanism of Borane-Catalyzed Si─H Bond Activation 36</p> <p>2.2.2.2 Additional Mechanistic Aspects 38</p> <p>2.2.3 Categorizing Reduction Types of π and σ Bonds Involving the η<sup>1</sup>-[B]–H–[Si] Adduct 40</p> <p>2.2.3.1 Type I: The Reduction of Polar π Bonds (El═Nu/El≡Nu) 40</p> <p>2.2.3.2 Type II: The Reduction of Polar σ Bonds (El–Nu) 45</p> <p>2.2.3.3 Type III: The Reduction of Nonpolar π Bonds (A═A/A≡A) 55</p> <p>2.2.3.4 Type IV: The Reduction of Nonpolar σ Bonds (A─A) 58</p> <p>2.2.3.5 Combination of Reduction Types 61</p> <p>2.2.3.6 Mechanistic Variation of Reduction Types 66</p> <p>2.3 The Activation of Si─H Bonds by Aluminum Lewis Acids 72</p> <p>2.4 The Activation of Si─H Bonds by Group 14 Lewis Acids 73</p> <p>2.4.1 Introduction 73</p> <p>2.4.2 Carbocations as Lewis Acids 73</p> <p>2.4.3 Cationic Tri-coordinate Silylium Ions and Neutral Si(IV) Lewis Acids 74</p> <p>2.5 The Activation of Si─H Bonds by Phosphorous-Based Lewis Acids 75</p> <p>2.5.1 P(III) Lewis Acids 75</p> <p>2.5.2 P(V) Lewis Acids 76</p> <p>2.6 Summary and Conclusions 76</p> <p>Acknowledgments 77</p> <p>References 77</p> <p><b>3 Si─H Bond Activation by Transition-Metal Lewis Acids 87<br /></b><i>Georgii I. Nikonov</i></p> <p>References 111</p> <p><b>4 Metal–Ligand Cooperative Si─H Bond Activation 115<br /></b><i>Francis Forster and Martin Oestreich</i></p> <p>4.1 Introduction 115</p> <p>4.2 Cooperative Si─H Bond Activation with Carbene Complexes Across M─C Double Bonds 116</p> <p>4.3 Cooperative Si─H Bond Activation at M─N Bonds 116</p> <p>4.4 Cooperative Si─H Bond Activation at M─O Bonds 117</p> <p>4.5 CooperativeSi─H Bond Activation at M─S Bonds 118</p> <p>4.5.1 Introduction 118</p> <p>4.5.2 Seminal Results in Cooperative Si─H Bond Activation Across M─S Bonds 119</p> <p>4.5.3 Dehydrogenative C─H Silylation 123</p> <p>4.5.4 Competing Dehydrogenative Coupling and Hydrosilylation 125</p> <p>4.5.5 C─H Silylation by Hydrosilylation/Dehydrogenative Silylation/ Retro-Hydrosilylation 126</p> <p>4.6 Summary 127</p> <p>References 128</p> <p><b>5 Cationic Silicon-Based Lewis Acids in Catalysis 131<br /></b><i>Polina Shaykhutdinova, Sebastian Keess, and Martin Oestreich</i></p> <p>5.1 Introduction 131</p> <p>5.2 Deoxygenation and Hydrosilylation of C<b>═</b>X Multiple Bonds 131</p> <p>5.2.1 Deoxygenation of C<b>═</b>O Bonds 131</p> <p>5.2.2 Hydrosilylation of C<b>═</b>O, C<b>═</b>N, C<b>═</b>C, and C<b>≡</b>C Bonds 133</p> <p>5.3 C─F Bond Activation 137</p> <p>5.3.1 Hydrodefluorination 137</p> <p>5.3.2 Defluorination Coupled with Electrophilic Aromatic Substitution (S<sub>E</sub>Ar) 144</p> <p>5.4 Friedel–Crafts C–H Silylation 149</p> <p>5.5 Diels–Alder Reactions 153</p> <p>5.6 Mukaiyama Aldol and Related Reactions 163</p> <p>References 167</p> <p><b>6 Transition-Metal-Catalyzed C─H Bond Silylation 171<br /></b><i>Yoshiya Fukumoto and Naoto Chatani</i></p> <p>6.1 C(sp)─H Bond Silylation 171</p> <p>6.2 C(sp<sup>2</sup>)─H Bond Silylation 174</p> <p>6.3 C(sp<sup>3</sup>)─H Bond Silylation 198</p> <p>References 207</p> <p><b>7 Transition-Metal-Free Catalytic C─H Bond Silylation 213<br /></b><i>David P. Schuman, Wen-Bo Liu, Nasri Nesnas, and Brian M. Stoltz</i></p> <p>7.1 Introduction 213</p> <p>7.2 Lewis Acid 213</p> <p>7.2.1 BCl<sub>3</sub> Catalyst 213</p> <p>7.2.2 B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, a “Frustrated” Lewis Acid Catalyst 214</p> <p>7.2.3 Lewis Acid Conclusions 222</p> <p>7.3 Brønsted Acid 222</p> <p>7.4 Brønsted Base 224</p> <p>7.4.1 Early Example of Catalytic C–H Silylation by Brønsted Base 224</p> <p>7.4.2 Fluoride/Base Catalysis 224</p> <p>7.4.3 Brønsted Base–Catalyzed C–H Silylation of Alkynes 226</p> <p>7.5 Radical Dehydrosilylation 229</p> <p>7.5.1 “Electron” as a C–H Silylation Catalyst 229</p> <p>7.5.2 Discovery of Unusual KO<i>t</i>-Bu-Catalyzed C–H Silylation 231</p> <p>7.5.2.1 KOt-Bu-Catalyzed C–H Silylation Methodology 232</p> <p>7.5.2.2 Mechanistic Investigations of KO<i>t</i>-Bu-Catalyzed C–H Silylation and Related Chemistry 234</p> <p>7.6 C(sp<sup>3</sup>)–H Silylation 238</p> <p>7.7 Conclusion 238</p> <p>References 239</p> <p><b>8 Silyl-Heck, Silyl-Negishi, and Related Reactions 241<br /></b><i>Sarah B. Krause and Donald A. Watson</i></p> <p>8.1 Introduction 241</p> <p>8.1.1 Activation of Silicon–Halogen Bonds 241</p> <p>8.1.1.1 Oxidative Addition to Platinum Complexes 242</p> <p>8.1.1.2 Oxidative Addition to Palladium Complexes 242</p> <p>8.1.1.3 Oxidative Addition to Iridium and Rhodium Complexes 243</p> <p>8.2 Silyl-Heck Reactions 244</p> <p>8.2.1 Early Silyl-Heck Studies 245</p> <p>8.2.2 Multicomponent Coupling 246</p> <p>8.2.3 Improved Silyl-Heck Reaction Conditions 247</p> <p>8.2.4 Mechanistic Considerations 252</p> <p>8.2.5 Pre-catalyst Investigations 254</p> <p>8.2.6 The Formation of Silyl Ethers and Disiloxanes via the Silyl-Heck Reaction 258</p> <p>8.2.7 The Nickel-Catalyzed Silyl-Heck Reaction 260</p> <p>8.3 Silyl-Negishi Reactions 263</p> <p>8.4 Silyl-Kumada–Corriu Reactions 267</p> <p>8.5 Summary and Conclusions 268</p> <p>References 269</p> <p><b>9 Transition-Metal-Catalyzed Cross-coupling of Organosilicon Compounds 271<br /></b><i>Tamejiro Hiyama, Yasunori Minami, and Atsunori Mori</i></p> <p>9.1 Introduction 271</p> <p>9.1.1 Historical Background of the Cross-coupling with Organosilicon Reagents 271</p> <p>9.2 Improvements in the Cross-coupling Reaction of Organosilicon Compounds 275</p> <p>9.2.1 Ligand Design for the Palladium Catalyst 275</p> <p>9.2.2 Variation of Palladium Catalysts and Additive Systems 276</p> <p>9.2.3 Alternative Electrophiles and Metal Catalysts 278</p> <p>9.2.4 Cross-coupling Reaction of Functionalized Organosilicon Reagents 284</p> <p>9.2.5 Cross-coupling Reaction of Organosilanes Through Directed C─H Bond Activation 285</p> <p>9.2.6 Tandem Reaction Involving Silicon-Based Cross-coupling 288</p> <p>9.3 Cross-coupling of Silanols, Silanolates, Oligosiloxanes, and Polysiloxanes 289</p> <p>9.3.1 Silanols and Silanolates 289</p> <p>9.3.2 Disiloxanes, Oligosiloxanes, and Polysiloxanes 294</p> <p>9.4 Cross-coupling of Allylsilane, Arylsilanes, and Trialkylsilanes 296</p> <p>9.4.1 Silacyclobutyl, Allylsilanes, and Benzylsilanes 296</p> <p>9.4.2 Arylsilanes 300</p> <p>9.4.3 Trialkylsilanes 304</p> <p>9.4.4 2-Hydroxymethylphenyl(dialkyl)silanes 313</p> <p>9.5 Summary 323</p> <p>References 323</p> <p><b>10 Lewis Base Activation of Silicon Lewis Acids 333<br /></b><i>Sergio Rossi and Scott E. Denmark</i></p> <p>10.1 Introduction 333</p> <p>10.2 Direct Transfer of a Silicon Ligand to a Substrate Not Coordinated to the Silicon Atom 338</p> <p>10.2.1 Transfer of Hydride: Reduction of C<b>═</b>O and C<b>═</b>N Double Bonds Promoted by Trichlorosilane 338</p> <p>10.2.2 Reduction of Nitroaromatic Compounds by Trichlorosilane 351</p> <p>10.3 Direct Transfer of a Silicon Substituent to the Silicon-Coordinated Substrate 353</p> <p>10.3.1 Opening of Epoxides 353</p> <p>10.3.1.1 Lewis Base–Catalyzed Epoxide Opening with Chlorotrimethylsilane 353</p> <p>10.3.1.2 Lewis Base–Catalyzed Epoxide Opening with Silicon Tetrachloride 355</p> <p>10.3.2 Allylation of Substrates Using Allylic Trichlorosilanes 359</p> <p>10.3.2.1 Allylation of C<b>═</b>N Bonds 359</p> <p>10.3.2.2 Allylation of C<b>═</b>O Bonds 361</p> <p>10.3.3 Aldol Reactions Involving Preformed Enoxysilane Derivatives 371</p> <p>10.4 Interaction of the Silicon-Activated Substrate with an External Non-Coordinated Nucleophile 375</p> <p>10.4.1 Allylation of Aldehydes Mediated by Silicon Tetrachloride 376</p> <p>10.4.2 Aldol Reactions Involving Trialkylsilyl Enol Derivatives 378</p> <p>10.4.2.1 Aldol Reactions Involving Trialkylsilyl Enol Ether Derivatives 378</p> <p>10.4.2.2 Aldol Reactions Involving Trialkylsilyl Ketene Acetals 379</p> <p>10.4.2.3 Vinylogous Aldol Addition 382</p> <p>10.4.3 Synthesis of Nitrile Derivatives from Silyl Ketene Imines 385</p> <p>10.4.4 Passerini Reaction 387</p> <p>10.4.5 Phosphonylation of Aldehydes with Triethyl Phosphite 388</p> <p>10.5 Interaction of the Activated Substrate with an Externally Coordinated Nucleophile 390</p> <p>10.5.1 Direct Aldol Reactions and Double Aldol Reaction 390</p> <p>10.5.1.1 Direct Aldol Addition of Activated Thioesters 395</p> <p>10.5.2 Enantioselective Morita–Baylis–Hillman Reaction 396</p> <p>10.5.3 Outlook and Perspective 397</p> <p>Acknowledgment 398</p> <p>References 398</p> <p><b>11 Hydrosilylation Catalyzed by Base Metals 417<br /></b><i>Yusuke Sunada and Hideo Nagashima</i></p> <p>11.1 Introduction 417</p> <p>11.2 Base-Metal Catalysts for Hydrosilylation of Alkenes with Alkoxyhydrosilanes and Hydrosiloxanes 418</p> <p>11.2.1 Iron and Cobalt Catalysts 419</p> <p>11.2.1.1 Catalysts Bearing Tridentate Nitrogen Redox-Active Ligands and Related Catalysts 419</p> <p>11.2.1.2 Catalysts Containing CO, CNR, and NHC Ligands 421</p> <p>11.2.1.3 Miscellaneous 425</p> <p>11.2.2 Nickel Catalysts 426</p> <p>11.3 Hydrosilylation of Alkenes with Primary and Secondary Hydrosilanes by Base-Metal Catalysts 427</p> <p>11.4 Conclusion and Future Outlook 434</p> <p>References 434</p> <p><b>12 Silylenes as Ligands in Catalysis 439<br /></b><i>Yu-Peng Zhou and Matthias Driess</i></p> <p>12.1 Introduction 439</p> <p>12.2 Applications of Silylene Ligands in Catalysis 439</p> <p>12.2.1 Carbon–Carbon Bond-Forming Reactions 439</p> <p>12.2.2 Carbon–Heteroatom Bond-Forming Reactions 445</p> <p>12.2.3 Reduction Reactions 451</p> <p>12.3 Summary and Outlook 456</p> <p>Acknowledgment 457</p> <p>References 457</p> <p><b>13 Enantioselective Synthesis of Silyl Ethers Through Catalytic Si─O Bond Formation 459<br /></b><i>Amir H. Hoveyda and Marc L. Snapper</i></p> <p>13.1 Introduction 459</p> <p>13.2 Lewis Base–Catalyzed Enantioselective Silylations of Alcohols 460</p> <p>13.2.1 Early Lewis Base–Mediated Enantioselective Silylations of Alcohols 460</p> <p>13.2.2 Lewis– and Brønsted Base–Catalyzed Enantioselective Silylations of Polyols 461</p> <p>13.2.3 Directed Lewis Base–Catalyzed Enantioselective Silylations of Polyols 469</p> <p>13.2.4 Lewis Base–Catalyzed Enantioselective Silylations of Mono-Alcohols 473</p> <p>13.2.5 Lewis Base–Mediated Enantioselective Desilylations of Mono-Alcohols 478</p> <p>13.3 Brønsted Acid–Catalyzed Enantioselective Silylations of Alcohols 479</p> <p>13.4 Hydroxyl Group Silylations with Organometallic Complexes 481</p> <p>13.4.1 Directed, Catalytic Enantioselective Hydroxyl Group Silylations with Chiral Silanes 482</p> <p>13.4.2 Metal‐Catalyzed Enantioselective Hydroxy Group Silylations with Chiral Silanes 486</p> <p>13.4.3 Directed, Enantioselective Catalytic Hydroxy Group Silylations with Achiral Silanes 487</p> <p>13.4.4 Enantioselective Catalytic Hydroxyl Group Silylations with Achiral Silanes 488</p> <p>13.5 Conclusions 490</p> <p>References 491</p> <p><b>14 Chiral Silicon Molecules 495<br /></b><i>Kazunobu Igawa and Katsuhiko Tomooka</i></p> <p>14.1 Introduction 495</p> <p>14.1.1 General Background of Chiral Silicon Molecules 495</p> <p>14.1.2 History of Chiral Silicon Molecules 496</p> <p>14.2 Preparation of Enantioenriched Chiral Silicon Molecules 497</p> <p>14.2.1 Classification of Preparation Methods for Enantioenriched Chiral Silicon Molecules 497</p> <p>14.2.2 Separation of Stereoisomers of Chiral Silicon Molecules 498</p> <p>14.2.2.1 Classification of Separation Methods for Stereoisomers of Chiral Silicon Molecules 498</p> <p>14.2.2.2 Separation of Silicon Epimers of Chiral Silicon Molecules 499</p> <p>14.2.2.3 Kinetic Resolution of Enantiomers of Chiral Silicon Molecules 500</p> <p>14.2.3 Asymmetric Synthesis of Chiral Silicon Molecules 503</p> <p>14.2.3.1 Classification of Asymmetric Synthetic Methods for Chiral Silicon Molecules 503</p> <p>14.2.3.2 Desymmetrization of Prochiral Silicon Atoms by Substitution of a Heteroatom Substituent 503</p> <p>14.2.3.3 Desymmetrization of Dihydrosilane 506</p> <p>14.2.3.4 Desymmetrization of Prochiral Silicon Atoms by Enantioselective Substitution of a Carbon Substituent 507</p> <p>14.2.3.5 Desymmetrization of Prochiral Silicon Atoms by Transformations of Carbon Substituent(s) without Si─C Bond Cleavage 513</p> <p>14.3 Stereoselective Transformation of Enantioenriched Chiral Silicon Molecules 515</p> <p>14.3.1 Classification of Stereoselective Transformation of Chiral Silicon Molecules 515</p> <p>14.3.2 Nucleophilic Substitution at a Chiral Silicon Center 515</p> <p>14.3.3 Electrophilic Substitution at Chiral Silicon Center 518</p> <p>14.3.4 Oxidation at Chiral Silicon Center 519</p> <p>14.3.4.1 Oxidation of Hydrosilane 519</p> <p>14.3.4.2 Oxidation of Alkenylsilane 521</p> <p>14.3.5 Multistep Functionalization of Chiral Silicon Molecules 521</p> <p>14.4 Application of Enantioenriched Chiral Silicon Molecules 523</p> <p>14.4.1 Classification of Applications of Chiral Silicon Molecules 523</p> <p>14.4.2 Application as Chiral Reagents 523</p> <p>14.4.3 Application as Chiral Materials 525</p> <p>14.4.3.1 Chiral Silicon Polymer 525</p> <p>14.4.3.2 Circular Polarized Luminescence of Chiral Silicon Molecules 527</p> <p>14.4.4 Applications as Bioactive Molecules 527</p> <p>14.5 Summary and Conclusions 528</p> <p>References 528</p> <p>Index 533</p>
<p><b>Tamejiro Hiyama, PhD,</b> is RDI Fellow at Chuo University and Professor Emeritus at Kyoto University (both in Japan). He is best known for his work in developing the Nozaki-Hiyama-Kishi reaction and the Hiyama cross-coupling. He is the recipient of the Chemical Society Award, the Humboldt Research Award, and the Frederic Stanley Kipping Award in Silicon Chemistry, and has published over 500 papers and 25 books.</p> <p><b>Martin Oestreich, PhD,</b> is Einstein Professor of Synthesis and Catalysis at the Technische Universität Berlin, Germany. His research is focused on main-group chemistry related to catalysis with emphasis on silicon and boron. He is on the editorial advisory board of <i>European Journal of Organic Chemistry</i>, <i>Chemical Society Reviews</i>, and <i>Chemical Science</i>, and has published over 250 papers and five books.</p>
<p><b>Provides a unique summary of important catalytic reactions in the presence of silicon</b> <p>A must-have for all synthetic chemists, this book summarizes all of the important developments in the application of organosilicon compounds in organic synthesis and catalysis. Edited by two world leaders in the field, it describes different approaches and covers a broad range of reactions, e.g. catalytic generation of silicon nucleophiles, Si-H Bond activation, C-H bond silylation, silicon-based cross-coupling reactions, and hydrosilylation in the presence of earth-abundant metals. <p>In addition to the topics covered above, <i>Organosilicon Chemistry: Novel Approaches and Reactions</i> features chapters that look at Lewis base activation of silicon Lewis acids, silylenes as ligands in catalysis, and chiral silicon molecules. <ul> <li>The first book about this topic in decades, covering a broad range of reactions</li> <li>Covers new approaches and novel catalyst systems that have been developed in recent years</li> <li>Written by well-known, international experts in the areas of organometallic silicon chemistry and organosilicon cross-coupling reactions</li> </ul> <p><i>Organosilicon Chemistry: Novel Approaches and Reactions</i> is an indispensable source of information for synthetic chemists in academia and industry, working in the field of organic synthesis, catalysis, and main-group chemistry.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €