Details

Harsh Environment Electronics


Harsh Environment Electronics

Interconnect Materials and Performance Assessment
1. Aufl.

von: Ahmed Sharif

144,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 09.04.2019
ISBN/EAN: 9783527813971
Sprache: englisch
Anzahl Seiten: 400

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides in-depth knowledge on novel materials that make electronics work under high-temperature and high-pressure conditions <br> <br> This book reviews the state of the art in research and development of lead-free interconnect materials for electronic packaging technology. It identifies the technical barriers to the development and manufacture of high-temperature interconnect materials to investigate into the complexities introduced by harsh conditions. It teaches the techniques adopted and the possible alternatives of interconnect materials to cope with the impacts of extreme temperatures for implementing at industrial scale. The book also examines the application of nanomaterials, current trends within the topic area, and the potential environmental impacts of material usage. <br> <br> Written by world-renowned experts from academia and industry, Harsh Environment Electronics: Interconnect Materials and Performance Assessment covers interconnect materials based on silver, gold, and zinc alloys as well as advanced approaches utilizing polymers and nanomaterials in the first section. The second part is devoted to the performance assessment of the different interconnect materials and their respective environmental impact. <br> <br> -Takes a scientific approach to analyzing and addressing the issues related to interconnect materials involved in high temperature electronics <br> -Reviews all relevant materials used in interconnect technology as well as alternative approaches otherwise neglected in other literature <br> -Highlights emergent research and theoretical concepts in the implementation of different materials in soldering and die-attach applications <br> -Covers wide-bandgap semiconductor device technologies for high temperature and harsh environment applications, transient liquid phase bonding, glass frit based die attach solution for harsh environment, and more <br> -A pivotal reference for professionals, engineers, students, and researchers <br> <br> Harsh Environment Electronics: Interconnect Materials and Performance Assessment is aimed at materials scientists, electrical engineers, and semiconductor physicists, and treats this specialized topic with breadth and depth. <br>
<p>Preface xv</p> <p><b>1 Wide-Bandgap Semiconductor Device Technologies for High-Temperature and Harsh Environment Applications </b><b>1<br /> </b><i>Md. Rafiqul Islam, Roisul H. Galib,Montajar Sarkar, and Shaestagir Chowdhury</i></p> <p>1.1 Introduction 1</p> <p>1.2 Crystal Structures and Fundamental Properties of Different Wide-Bandgap Semiconductors 3</p> <p>1.2.1 Relevant Properties of GaN, SiC, and Si 3</p> <p>1.2.2 Structure of SiC 3</p> <p>1.2.2.1 Polytypism in SiC 3</p> <p>1.2.2.2 Modification of SiC Structures with Dopant 6</p> <p>1.2.3 III–V Nitride-Based Structure 6</p> <p>1.2.3.1 Fundamental Properties of GaN and AlN 7</p> <p>1.2.3.2 Nitride Crystal Growth 7</p> <p>1.2.3.3 Polytypism in the III–V Nitrides 8</p> <p>1.2.3.4 Electrical Properties of Undoped Nitride Thin films 9</p> <p>1.2.3.5 Properties of Doped GaN 9</p> <p>1.2.4 Alloys and Heterostructures 10</p> <p>1.2.4.1 GaInN 10</p> <p>1.3 Devices ofWide-Bandgap Semiconductors 10</p> <p>1.3.1 SiC in Junction Field-Effect Transistors (JFETs) 10</p> <p>1.3.1.1 Specific Contact Resistance (𝜌c) 11</p> <p>1.3.2 SiC in Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) 12</p> <p>1.3.2.1 1200-V, 60-A SiC Power Module MOSFET 12</p> <p>1.3.2.2 Design of the 1200-V, 60-A Phase-leg Module 13</p> <p>1.3.2.3 Blocking Capability 14</p> <p>1.3.2.4 Static Characteristics 15</p> <p>1.3.2.5 Transfer Characteristics 15</p> <p>1.3.2.6 Evaluation of the Gate Oxide Stability 16</p> <p>1.3.3 Six-Pack SiC MOSFET Modules Paralleled in a Half-Bridge Configuration 16</p> <p>1.3.4 4H-SiC Metal Semiconductor Field-Effect Transistor (MESFET) for Integrated Circuits (ICs) 18</p> <p>1.3.4.1 Design of 4H-SiC MESFET 18</p> <p>1.3.4.2 <i>I</i>–<i>V </i>Characteristics 19</p> <p>1.3.5 SiC Capacitive Pressure Sensor 20</p> <p>1.3.5.1 Sensor Characteristics at High Temperature 21</p> <p>1.3.6 Ni<sup>2+</sup>-doped ZnO as Diluted Magnetic Semiconductors (DMSs) 22</p> <p>1.3.6.1 Saturation Magnetization (Ms) at High Temperatures 22</p> <p>1.3.6.2 The Coercivity (Hc) and Effective MagneticMoment (𝜇eff) at High Temperatures 23</p> <p>1.3.7 Thermomechanical Stability of SiC, GaN, AlN, ZnO, and ZnSe 24</p> <p>1.4 Conclusion 25</p> <p>References 26</p> <p><b>2 High-Temperature Lead-free Solder Materials and Applications </b><b>31<br /> </b><i>Mohd F. M. Sabri, Bakhtiar Ali, and Suhana M. Said</i></p> <p>2.1 Introduction 31</p> <p>2.2 High-Temperature Solder Applications 32</p> <p>2.2.1 Die-Attach Material 32</p> <p>2.2.2 BGA Technology 33</p> <p>2.2.3 Flip-Chip Technology 34</p> <p>2.2.4 MCM Technology 34</p> <p>2.2.5 CSP Technology 35</p> <p>2.3 Requirements for a Candidate Solder in High-temperature Applications 35</p> <p>2.4 High-Pb-Content Solders 37</p> <p>2.5 Zn-Based Solders 38</p> <p>2.5.1 Zn–Al 38</p> <p>2.5.2 Zn–Sn 39</p> <p>2.6 Bi-Based Solders 42</p> <p>2.6.1 Bi–Ag 42</p> <p>2.6.2 Bi–Sb 44</p> <p>2.7 Au-Based Solders 47</p> <p>2.7.1 Au–Sn 47</p> <p>2.7.2 Au–Ge 49</p> <p>2.8 Sn-Based Solders 51</p> <p>2.8.1 Sn–Sb 51</p> <p>2.8.2 Sn–Ag–Cu/Sn–Cu/Sn–Ag 53</p> <p>2.9 Conclusion and Future Research Directions 56</p> <p>References 60</p> <p><b>3 Role of Alloying Addition in Zn-Based Pb-Free Solders </b><b>67<br /> </b><i>Khairul Islam and Ahmed Sharif</i></p> <p>3.1 Introduction 67</p> <p>3.2 Zn-Al-Based Solders 68</p> <p>3.3 Zn–Sn-Based Solders 75</p> <p>3.4 Zn-Based Alloys with Minor Addition 80</p> <p>3.5 Zn–Ni-Based Solders 81</p> <p>3.6 Zn–Mg-Based Solders 82</p> <p>3.7 Zn–In-Based Solders 83</p> <p>3.8 Zn–Ag-Based Solders 84</p> <p>3.9 Conclusion 84</p> <p>Acknowledgment 85</p> <p>References 85</p> <p><b>4 Effect of Cooling Rate on the Microstructure, Mechanical Properties, and Creep Resistance of a Cast Zn–Al–Mg High-temperature Lead-Free Solder Alloy </b><b>91<br /> </b><i>Reza Mahmudi, Davood Farasheh, and Seyyed S. Biriaie</i></p> <p>4.1 Introduction 91</p> <p>4.2 Experimental Procedures 93</p> <p>4.2.1 Materials and Processing 93</p> <p>4.2.2 Mechanical Property Measurements 93</p> <p>4.3 Results and Discussion 94</p> <p>4.3.1 Shear Strength and Hardness 94</p> <p>4.3.2 Microstructural Observations 97</p> <p>4.3.3 Impression Creep 100</p> <p>4.3.4 Creep Mechanisms 103</p> <p>4.3.5 Microstructure–Property Relationships 110</p> <p>4.4 Conclusions 111</p> <p>References 112</p> <p><b>5 Development of Zn–Al–</b><b><i>x</i>Ni Lead-Free Solders for High-Temperature Applications 115<br /> </b><i>Sanjoy Mallick, Md Sharear Kabir, and Ahmed Sharif</i></p> <p>5.1 Introduction 115</p> <p>5.2 Experimental 116</p> <p>5.3 Results and Discussions 118</p> <p>5.4 Conclusions 130</p> <p>Acknowledgments 131</p> <p>References 131</p> <p><b>6 Study of Zn–Mg–Ag High-Temperature Solder Alloys </b><b>135<br /> </b><i>Roisul H. Galib, Md. Ashif Anwar, and Ahmed Sharif</i></p> <p>6.1 Introduction 135</p> <p>6.2 Materials and Methods 136</p> <p>6.3 Results and Discussions 137</p> <p>6.3.1 Chemical Composition 137</p> <p>6.3.2 Microstructural Analysis 137</p> <p>6.3.3 Mechanical Properties 141</p> <p>6.3.4 Electrical Properties 142</p> <p>6.3.5 Thermal Properties 142</p> <p>6.4 Conclusions 143</p> <p>Acknowledgments 144</p> <p>References 144</p> <p><b>7 Characterization of Zn–Mo and Zn–Cr Pb-Free Composite Solders as a Potential Replacement for Pb-Containing Solders </b><b>147<br /> </b><i>Khairul Islam and Ahmed Sharif</i></p> <p>7.1 Introduction 147</p> <p>7.2 Experimental 149</p> <p>7.3 Results and Discussion 150</p> <p>7.3.1 Zn–<i>x</i>Mo System 150</p> <p>7.3.1.1 Differential Thermal Analysis (DTA) 150</p> <p>7.3.1.2 Microstructure of Zn–<i>x</i>Mo System 151</p> <p>7.3.1.3 Brinell Hardness 153</p> <p>7.3.1.4 Tensile Strength 153</p> <p>7.3.1.5 Tensile Fracture Surface Analysis 154</p> <p>7.3.1.6 TMA Analysis 154</p> <p>7.3.1.7 Electrical Conductivity Analysis 156</p> <p>7.3.2 Zn–<i>x</i>Cr System 156</p> <p>7.3.2.1 Differential Thermal Analysis 156</p> <p>7.3.2.2 Microstructure of Zn–<i>x</i>Cr System 157</p> <p>7.3.2.3 Brinell Hardness 158</p> <p>7.3.2.4 Tensile Strength 159</p> <p>7.3.2.5 Fracture Surface Analysis 160</p> <p>7.3.2.6 TMA Analysis 160</p> <p>7.3.2.7 Electrical Conductivity Analysis 162</p> <p>7.3.3 Comparison of Zn–<i>x</i>Mo and Zn–<i>x</i>Cr Solders with Conventional Solders 162</p> <p>7.4 Conclusion 163</p> <p>Acknowledgments 163</p> <p>References 164</p> <p><b>8 Gold-Based Interconnect Systems for High-Temperature and Harsh Environments </b><b>167<br /> </b><i>Ayesha Akter, Ahmed Sharif, and Rubayyat Mahbub</i></p> <p>8.1 Introduction 167</p> <p>8.2 High-Temperature Solder System 168</p> <p>8.2.1 Au as High-Temperature Solder 169</p> <p>8.3 Various Au-Based Solder Systems 169</p> <p>8.3.1 Au–Sn System 170</p> <p>8.3.1.1 Au-Rich Side of the Au–Sn System 171</p> <p>8.3.1.2 Sn-Rich Side of the Au–Sn System 172</p> <p>8.3.2 Au–Ge System 174</p> <p>8.3.3 Au–In System 176</p> <p>8.3.4 Au–Si System 177</p> <p>8.4 Other Interconnecting Systems 178</p> <p>8.4.1 Wire Bonding 178</p> <p>8.4.2 Au-enriched SLID 179</p> <p>8.4.3 Nanoparticle-Stabilized Composite Solder 180</p> <p>8.4.4 Solderable Coatings 181</p> <p>8.5 Applications 182</p> <p>8.5.1 Electronic Connectors 182</p> <p>8.5.2 Optoelectronic Connectors 182</p> <p>8.5.3 Medical Field 183</p> <p>8.5.4 Jewelry 183</p> <p>8.5.5 Au Stud Bump 184</p> <p>8.6 Substitutes for Au and Reductions in Use 184</p> <p>8.7 Future Uses of Au 185</p> <p>8.8 Conclusions 185</p> <p>Acknowledgments 185</p> <p>References 185</p> <p><b>9 Bi-Based Interconnect Systems and Applications </b><b>191<br /> </b><i>Manifa Noor and Ahmed Sharif</i></p> <p>9.1 Introduction 191</p> <p>9.2 Various Bi-Based Solder Systems 192</p> <p>9.2.1 Bi–Ag Alloys 192</p> <p>9.2.2 Bi–Sb Alloy 196</p> <p>9.2.3 Bi–Sb–Cu Alloy 198</p> <p>9.2.4 Bi–Cu-Based Alloys 199</p> <p>9.2.5 Bi–Sn 201</p> <p>9.2.6 Bi–La 204</p> <p>9.2.7 Bi-Based Transient Liquid Phase Bonding 204</p> <p>9.2.8 Bi-Based Composite System 205</p> <p>9.3 Conclusion 206</p> <p>Acknowledgments 206</p> <p>References 206</p> <p><b>10 Recent Advancement of Research in Silver-Based Solder Alloys </b><b>211<br /> </b><i>Ahmed Sharif</i></p> <p>10.1 Introduction 211</p> <p>10.2 Overview of Different Ag-Based Systems 213</p> <p>10.2.1 Ag Pastes 213</p> <p>10.2.1.1 Micron-Ag Paste 213</p> <p>10.2.1.2 Nano-Ag Paste 215</p> <p>10.2.1.3 Hybrid Silver Pastes 216</p> <p>10.2.1.4 Ag-Based Bimetallic Paste 217</p> <p>10.2.1.5 Composite Micron-Ag Pastes 218</p> <p>10.2.2 Ag Laminates 219</p> <p>10.2.3 Plated Ag 219</p> <p>10.2.4 Silver Foil 220</p> <p>10.2.5 Ag Columns 222</p> <p>10.2.6 Ag–In System 223</p> <p>10.3 Conclusions 223</p> <p>Acknowledgments 224</p> <p>References 224</p> <p><b>11 Silver Nanoparticles as Interconnect Materials </b><b>235<br /> </b><i>Md. Ashif Anwar, Roisul Hasan Galib, and Ahmed Sharif</i></p> <p>11.1 Introduction 235</p> <p>11.2 Synthesis of Ag Nanoparticles 236</p> <p>11.2.1 Carey Lea’s Colloidal 236</p> <p>11.2.2 e-Beam IrradiationMethod 237</p> <p>11.2.3 Chemical Reduction Method 237</p> <p>11.2.4 Thermal Decomposition Method 238</p> <p>11.2.5 Laser Ablation Method 239</p> <p>11.2.6 Microwave Radiation Method 239</p> <p>11.2.7 Solid–Liquid Extraction Method 240</p> <p>11.2.8 Tollens Method 240</p> <p>11.2.9 Biological Method 241</p> <p>11.2.10 Polyoxometalate Method 241</p> <p>11.2.11 Solvated Metal Atom Dispersion Method 241</p> <p>11.3 Composition of Ag Nanopaste 241</p> <p>11.4 Joining Methods 242</p> <p>11.5 Properties of Nano-Ag Joints 243</p> <p>11.5.1 Shear Properties of Nano-Ag Joints 245</p> <p>11.5.2 Thermal Properties 246</p> <p>11.5.3 Rheological Properties 247</p> <p>11.6 Factors Affecting the Properties of Nano-Ag Joints 248</p> <p>11.6.1 Particle Size and Composition of the Paste 248</p> <p>11.6.2 Effect of Sintering Temperature, Time, and Pressure on Ag Joints 252</p> <p>11.6.3 Bonding Substrate 254</p> <p>11.7 Applications of Ag Nanoparticles 255</p> <p>11.7.1 Die-Attach Material 255</p> <p>11.7.2 Solar Cell 255</p> <p>11.7.3 Nano-Ag as a Potent Bactericidal Agent 256</p> <p>11.7.4 Nano-Ag in Antifungal Therapy 256</p> <p>11.8 Conclusions and Future Trends 257</p> <p>References 257</p> <p><b>12 Transient Liquid Phase Bonding </b><b>263<br /> </b><i>Tariq Islam and Ahmed Sharif</i></p> <p>12.1 Introduction 263</p> <p>12.2 History and Development of TLP 264</p> <p>12.3 Theoretical Aspects of TLP 266</p> <p>12.3.1 TLP Process, Types, and Relevance with Phase Diagram 266</p> <p>12.3.2 Classification of TLP Bonding Based on Interlayer Composition 272</p> <p>12.3.3 Variants of TLP Bonding 272</p> <p>12.4 Development and Applicable Trends of TLP Using Alloy Systems (Phase Diagrams) with Special Features 273</p> <p>12.4.1 Cu–Sn System 273</p> <p>12.4.2 Ni–Sn System 276</p> <p>12.4.3 Ag–Sn System 280</p> <p>12.4.4 Au–Sn System 281</p> <p>12.4.5 Miscellaneous Systems 283</p> <p>12.4.5.1 Cu–Ga System 283</p> <p>12.4.5.2 Au–(Ge, Si) System 284</p> <p>12.5 Applications and Materials Used in TLPB 284</p> <p>12.6 Future of TLP and Conclusion 285</p> <p>References 285</p> <p><b>13 All-Copper Interconnects for High-Temperature Applications </b><b>293<br /> </b><i>Ahmed Sharif</i></p> <p>13.1 Introduction 293</p> <p>13.2 Direct Cu-to-Cu Bonding 294</p> <p>13.2.1 Thermocompression Bonding 294</p> <p>13.2.2 Surface-Activated Bonding (SAB) 296</p> <p>13.2.3 Self-Assembled Monolayers (SAMs) 296</p> <p>13.2.4 Capping with Metal Layer 297</p> <p>13.3 Cu Paste Bonding 299</p> <p>13.3.1 Cu Nanoparticle (Cu NP) 299</p> <p>13.3.1.1 Bonding with Cu NP Under Pressure 299</p> <p>13.3.1.2 Cu NP Bonding Without Pressure 301</p> <p>13.3.2 Cu Microparticles 301</p> <p>13.3.3 Cu Hybrid Particles 303</p> <p>13.3.4 Cu–Sn TLP System 303</p> <p>13.3.5 Cu–Ag Composite Systems 304</p> <p>13.4 Conclusions 306</p> <p>Acknowledgments 306</p> <p>References 306</p> <p><b>14 Glass-Frit-Based Die-Attach Solution for Harsh Environments </b><b>313|<br /> </b><i>Ahmed Sharif</i></p> <p>14.1 Introduction 313</p> <p>14.1.1 Basic Criteria of the Glass Composition for Glass Frit 314</p> <p>14.2 Overview of Different Glass Frit Systems 315</p> <p>14.2.1 Pb-Containing Glass Frit 316</p> <p>14.2.2 Pb-Free Glass Frit 316</p> <p>14.2.2.1 Borosilicate Glasses 317</p> <p>14.2.2.2 Phosphate Glasses 318</p> <p>14.2.2.3 Bi-Based Lead-Free Frit 319</p> <p>14.2.2.4 Vanadate Glasses 319</p> <p>14.2.2.5 Tellurite Glasses 319</p> <p>14.2.3 Conductive Glass Frit 320</p> <p>14.3 Bonding Process 320</p> <p>14.4 Bond Characteristics 322</p> <p>14.5 Conclusions 324</p> <p>Acknowledgments 325</p> <p>References 325</p> <p><b>15 Carbon-Nanotube-Reinforced Solders as Thermal Interface Materials </b><b>333<br /> </b><i>Md Muktadir Billah</i></p> <p>15.1 Introduction 333</p> <p>15.2 Typical Thermal Interface Materials 334</p> <p>15.3 Solders as Thermal Interface Materials 334</p> <p>15.4 Literature Study: Different Fabrication Techniques 336</p> <p>15.4.1 Mechanical Alloying/Sonication and Sintering 336</p> <p>15.4.2 Reflow Process 338</p> <p>15.4.3 Electrochemical Co-deposition Method 339</p> <p>15.4.4 Using Metal-Coated Nanotubes 339</p> <p>15.4.5 Sandwich Method 341</p> <p>15.4.6 Melting Route 341</p> <p>15.5 Challenges and Future Scope 342</p> <p>References 342</p> <p><b>16 Reliability Study of Solder Joints in Electronic Packaging Technology </b><b>345<br /> </b><i>Ahmed Sharif and Sushmita Majumder</i></p> <p>16.1 Introduction 345</p> <p>16.2 Reliability Tests 346</p> <p>16.2.1 Destructive Shear Test 346</p> <p>16.2.2 Pull Test 347</p> <p>16.2.3 Bending Test 348</p> <p>16.2.4 Board-Level Drop Test 349</p> <p>16.2.5 Thermal Cycling 351</p> <p>16.2.6 Shock Impact 354</p> <p>16.2.7 Fatigue Test 355</p> <p>16.2.8 Pressure Cooker Test 356</p> <p>16.2.9 Thermal Shock Testing 357</p> <p>16.2.10 Acoustic Microscopy 358</p> <p>16.2.11 Thermography 358</p> <p>16.2.12 X-ray Computed Tomography 359</p> <p>16.3 Conclusion 360</p> <p>Acknowledgments 360</p> <p>References 361</p> <p>Index 367</p>
<p><b><i>Ahmed Sharif, PhD,</i></b> <i>has been working as faculty in the Department of Materials and Metallurgical Engineering at the Bangladesh University of Engineering and Technology since 1999. He is an international renowned scientist in joining technology, and has published more than fifty peer-reviewed papers in leading international journals in soldering and ferroelectric materials research. A part of his PhD research has led to the award of an international prize, the "IEEE CPMT Young Scientist Award", for his paper presentation in an IEEE conference held in Japan in 2004.</i>
<p><b>Provides in-depth knowledge on novel materials that make electronics work under high-temperature and high-pressure conditions</b> <p>This book reviews the state of the art in research and development of lead-free interconnect materials for electronic packaging technology. It identifies the technical barriers to the development and manufacturing of high-temperature interconnect materials, with a particular focus on the complexities introduced by harsh conditions. It also discusses the techniques to cope with the impact of extreme temperatures when implementing manufacturing processes at an industrial scale. Furthermore, the book examines the application of nanomaterials, current trends within the topical area, and the potential environmental impacts of material usage. <p>Written by world-renowned experts from academia and industry, <i>Harsh Environment Electronics: Interconnect Materials and Performance Assessment</i> covers interconnect materials based on silver, gold, and zinc alloys as well as advanced approaches utilizing polymers and nanomaterials in the first section. The second part is devoted to the performance assessment of the different interconnect materials and their respective environmental impact<i>.</i> <ul> <li>Takes a scientific approach to analyzing and addressing the issues related to interconnect materials involved in high temperature electronics</li> <li>Reviews all relevant materials used in interconnect technology as well as alternative approaches</li> <li>Highlights emergent research and theoretical concepts in the implementation of different materials in soldering and die-attach applications</li> <li>Covers wide-bandgap semiconductor device technologies for high-temperature and harsh environment applications, transient liquid phase bonding, glass frit based die attach solution for harsh environment, and more</li> <li>A pivotal reference for professionals, engineers, students, and researchers</li> </ul> <p><i>Harsh Environment Electronics: Interconnect Materials and Performance Assessment</i> is aimed at materials scientists, electrical engineers, and semiconductor physicists, and treats this specialized topic with breadth and depth.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €