Details

Handbook of Fuels


Handbook of Fuels

Energy Sources for Transportation
2. Aufl.

von: Barbara Elvers, Andrea Schütze

171,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 08.09.2021
ISBN/EAN: 9783527813483
Sprache: englisch
Anzahl Seiten: 576

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A guide to industrially relevant products and processes for transportation fuels</b></p> <p>The <i>Handbook of Fuels</i> offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines.</p> <p>This comprehensive resource contains critical information on the legal, safety, and environmental issues associated with the production and use of fuels as well as reviewing important secondary aspects of the use and production of fuels. This authoritative guide includes contributions from authors who are long-standing contributors to the <i>Ullmann's Encyclopedia</i>, the world's most trusted reference for industrial chemistry. This important guide:</p> <ul> <li>Contains an updated edition of the authoritative resource to the production and use of fuels used for transportation</li> <li>Includes information that has been selected to reflect only commercially relevant products and processes</li> <li>Presents contributions from a team of noted experts in the field</li> <li>Offers the most recent developments in fuels and additives from renewable sources </li> </ul> <p>Written for professionals in the fields of fossil and renewable fuels, engine design, and transportation, <i>Handbook of Fuels</i> is the comprehensive resource that has been revised to reflect the recent developments in fuels used for transportation.</p>
<p>Preface to the Second Edition xvii</p> <p>Preface to the First Edition xix</p> <p><b>1 Introduction </b><b>1<br /></b><i>Klaus Reders and Andrea Schütze</i></p> <p>1.1 History of the Spark Ignited “Otto” Engine and of Gasoline 3</p> <p>1.2 History of the Diesel Engine and of Diesel Fuel 14</p> <p>1.3 History of Alternative Fuels 19</p> <p>1.3.1 Ethanol 19</p> <p>1.3.2 Methanol 24</p> <p>1.3.3 Vegetable Oils and Hydrotreated Vegetable Oils (HVOs) 24</p> <p>1.3.4 Biodiesel/FAME 25</p> <p>1.3.5 Liquefied Petroleum Gas (LPG) 28</p> <p>1.3.6 Natural Gas 30</p> <p>1.4 Emission RegulationsWorldwide 33</p> <p>1.4.1 Europe 35</p> <p>1.4.2 United States 41</p> <p>1.4.3 Japan 48</p> <p>1.4.4 China 51</p> <p>1.5 Well-to-Wheel Analysis of Alternative Fuels 53</p> <p>1.5.1 Life-cycle Assessment 54</p> <p>1.5.2 Well-to-Wheel 55</p> <p>1.5.3 Boundary Conditions of the JRC Study 56</p> <p>1.5.4 Summary of Results of the JRC Study 57</p> <p>1.5.4.1 Alternative Liquid Fuels 60</p> <p>1.5.4.2 Alternative Gaseous Fuels 61</p> <p>1.5.4.3 Electricity and Hydrogen 61</p> <p>1.5.4.4 2020+ Horizon 62</p> <p>References 64</p> <p><b>Part I Automotive Fuels </b><b>69</b></p> <p><b>2 Engine Technology </b><b>71<br /></b><i>Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders</i></p> <p>2.1 Otto Engines 71</p> <p>2.2 Diesel Engines 73</p> <p>References 75</p> <p><b>3 Fuel Composition and Engine Efficiency </b><b>77<br /></b><i>Werner Dabelstein, Arno Reglitzky, Andrea Schütze, Klaus Reders, and Andreas Brunner</i></p> <p>3.1 Fuel Composition and Engine Efficiency 77</p> <p>3.1.1 Quality Aspects of Gasoline 77</p> <p>3.1.1.1 Octane Quality 77</p> <p>3.1.1.2 Volatility 79</p> <p>3.1.1.3 Fuel Composition to Reduce Toxicity and Exhaust Emissions 80</p> <p>3.1.1.4 Stability, Cleanliness, etc. 83</p> <p>3.1.1.5 Performance Additives 84</p> <p>3.1.2 Quality Aspects of Diesel Fuels 84</p> <p>3.1.2.1 Ignition Quality 84</p> <p>3.1.2.2 Density 85</p> <p>3.1.2.3 Sulfur Content 85</p> <p>3.1.2.4 Cold Flow Properties 85</p> <p>3.1.2.5 Lubricity 85</p> <p>3.1.2.6 Viscosity 86</p> <p>3.1.2.7 Volatility 86</p> <p>3.1.2.8 Diesel Fuel Stability, Cleanliness, and Safety 86</p> <p>3.1.2.9 Diesel Fuel Effects on Exhaust Emissions 86</p> <p>3.1.2.10 Performance Additives 88</p> <p>References 88</p> <p><b>4 Fuel Components: Petroleum-derived Fuels </b><b>91<br /></b><i>Werner Dabelstein, Arno Reglitzky, Andrea Schütze, and Klaus Reders</i></p> <p>4.1 Petroleum-derived Fuels 91</p> <p>4.1.1 Gasoline Components 91</p> <p>4.1.1.1 Straight-run Gasoline 91</p> <p>4.1.1.2 Thermally Cracked Gasoline 93</p> <p>4.1.1.3 Catalytically Cracked Gasoline 93</p> <p>4.1.1.4 Catalytic Reformate (Platformate) 94</p> <p>4.1.1.5 Isomerate 94</p> <p>4.1.1.6 Alkylate 94</p> <p>4.1.1.7 Polymer Gasoline 94</p> <p>4.1.1.8 Oxygenates 95</p> <p>4.1.2 Diesel Fuel Components 95</p> <p>4.1.2.1 Straight-run Middle Distillate 95</p> <p>4.1.2.2 Thermally Cracked Gas Oil 96</p> <p>4.1.2.3 Catalytically Cracked Gas Oil 96</p> <p>4.1.2.4 Hydrocracked Gas Oil 97</p> <p>4.1.2.5 Kerosene 97</p> <p>4.1.2.6 Biofuel Components 97</p> <p>4.1.2.7 Synthetic Diesel Fuel 98</p> <p>4.1.3 Storage and Transportation 98</p> <p>References 99</p> <p><b>5 Liquefied Petroleum Gas </b><b>101<br /></b><i>Stephen M. Thompson, Gary Robertson, RobertMyers, and Andrea Schütze</i></p> <p>5.1 Introduction 101</p> <p>5.2 Properties 102</p> <p>5.3 Production and Processing 103</p> <p>5.3.1 Recovery from Natural Gas 103</p> <p>5.3.1.1 Recovery and Manufacture in the Refinery 103</p> <p>5.4 Purification 108</p> <p>5.4.1 Adsorptive Purification 109</p> <p>5.4.2 Absorptive Purification 109</p> <p>5.5 Storage and Transportation 110</p> <p>5.5.1 Aboveground Storage 110</p> <p>5.5.2 Underground Storage 110</p> <p>5.5.3 Transportation 111</p> <p>5.6 Uses 111</p> <p>5.6.1 LPG Standards and Regulations 112</p> <p>5.6.1.1 Refueling Infrastructure 112</p> <p>5.6.1.2 Vehicle Conversions to LPG 113</p> <p>5.6.2 Environmental Benefits 113</p> <p>5.6.2.1 Outlook 115</p> <p>5.7 Safety Aspects 115</p> <p>5.7.1 Occupational Health 116</p> <p>References 116</p> <p><b>6 Natural Gas </b><b>119<br /></b><i>Klaus Reders, Margret Schmidt, and Andrea Schütze</i></p> <p>6.1 Occurrence 119</p> <p>6.2 Composition 121</p> <p>6.3 Processing 123</p> <p>6.3.1 Oil and Condensate Removal 124</p> <p>6.3.2 Water Removal 124</p> <p>6.3.3 Separation of Natural Gas Liquids 125</p> <p>6.3.3.1 Cryogenic Expansion Process 126</p> <p>6.3.4 Sulfur and Carbon Dioxide Removal 126</p> <p>6.4 Transport/Distribution/Local Blending 126</p> <p>6.5 Properties and Specifications 127</p> <p>6.6 Natural Gas as Automotive Fuel 129</p> <p>6.6.1 Vehicle Refueling Systems 133</p> <p>6.6.1.1 Slow-Fill Refueling 133</p> <p>6.6.1.2 Fast-Fill Refueling 134</p> <p>6.6.2 Vehicle and Engine Concepts 134</p> <p>6.6.2.1 Vehicle Technology 135</p> <p>6.6.3 CNG Vehicles in the Market 137</p> <p>6.6.4 Vehicle Fuel Supply System 137</p> <p>6.6.5 Combustion and Emissions 139</p> <p>6.7 Safety Aspects 141</p> <p>6.8 Biomethane 141</p> <p>6.8.1 Production 142</p> <p>6.8.1.1 Anaerobic Fermentation 145</p> <p>6.8.1.2 Biogas from Solids 146</p> <p>6.8.2 Upgrading of Biogas to Natural Gas Quality 147</p> <p>6.8.2.1 Water Scrubbing and Physical Scrubbing 147</p> <p>6.8.2.2 Chemical Absorption 148</p> <p>6.8.2.3 Membrane Separation 148</p> <p>6.8.2.4 Pressure Swing Adsorption (PSA) 149</p> <p>6.8.2.5 Cryogenic Separation 149</p> <p>6.8.3 Storage and Transportation 149</p> <p>6.8.3.1 Storage 149</p> <p>6.8.3.2 Distribution 150</p> <p>6.8.4 Biomethane Regulations 150</p> <p>6.8.4.1 Regulations and Standards 151</p> <p>6.8.5 Well-to-wheel Analysis for LPG, CNG, and Biomethane 152</p> <p>6.8.5.1 Well-to-Tank Analysis 152</p> <p>6.8.5.2 Compressed Biomethane (CBM) 155</p> <p>6.8.5.3 Well-to-Wheels Analysis 156</p> <p>References 158</p> <p><b>7 Synthetic Diesel Fuels </b><b>161<br /></b><i>H.P. Calis, Wolfgang Lüke, Ingo Drescher, and Andrea Schütze</i></p> <p>7.1 XTL Fuels 162</p> <p>7.1.1 History 162</p> <p>7.1.2 XTL Production Process 162</p> <p>7.1.2.1 Fischer–Tropsch Process 162</p> <p>7.1.2.2 IH2 Technology 166</p> <p>7.1.2.3 BTL Fuels 168</p> <p>7.1.3 GTL and BTL Fuel Characteristics 170</p> <p>7.1.3.1 Cold Flow Performance 171</p> <p>7.1.3.2 Lubricity Performance 174</p> <p>7.1.3.3 Impact on Injector Cleanliness and Spray Characteristics 174</p> <p>7.1.3.4 Advantages of Synthetic Fuels for Emission Control 175</p> <p>7.1.4 Outlook 178</p> <p>7.2 DME (Dimethyl Ether) and OME Fuels 180</p> <p>7.2.1 Introduction 180</p> <p>7.2.2 Fuel Standards 181</p> <p>7.2.3 Fuel Properties 183</p> <p>7.2.4 Infrastructure and Safety 186</p> <p>7.2.4.1 Use as Fuel 187</p> <p>7.3 Well-to-Wheel (WTW) Analysis for XTL and DME Fuels 190</p> <p>7.3.1 Well-to-Wheels Analysis for XTL 190</p> <p>7.3.2 Well-to-Tank Analysis for DME 193</p> <p>7.4 Well-to-Wheel Analysis for XTL and DME 195</p> <p>References 196</p> <p><b>8 Synthetic Gasoline Fuels </b><b>201<br /></b><i>Andrea Schütze</i></p> <p>8.1 GTL Naphtha 201</p> <p>8.2 Methanol to Gasoline Process (MTG) 202</p> <p>8.3 Production Process 202</p> <p>8.4 Fuel Properties 203</p> <p>References 204</p> <p><b>9 Ethanol </b><b>207<br /></b><i>Andrea Schütze</i></p> <p>9.1 Production 210</p> <p>9.1.1 Milling 211</p> <p>9.1.2 Processing of Starch/Maize Mash 212</p> <p>9.1.3 Fermentation of Glucose 213</p> <p>9.1.4 Distillation and Increase of Ethanol Concentration 213</p> <p>9.2 Feedstock 214</p> <p>9.3 Land Use 215</p> <p>9.3.1 Direct Land Use Change Emissions (DLUC) 217</p> <p>9.3.2 Indirect Land Use Change (ILUC) 217</p> <p>9.4 Nitrogen Oxide Emissions 217</p> <p>9.5 Water Foot Print and Impact onWater Table 219</p> <p>9.6 Other Environmental Effects 219</p> <p>9.6.1 Soil Quality/Erosion 219</p> <p>9.6.2 Eutrophication and Acidification 219</p> <p>9.6.3 Biodiversity 219</p> <p>9.7 Bioethanol Made from Lignocellulose 220</p> <p>9.8 Fuel Standards 221</p> <p>9.9 Fuel Properties 224</p> <p>9.9.1 Octane Number 224</p> <p>9.9.1.1 Volatility and Distillation 226</p> <p>9.9.1.2 Heat of Vaporization 228</p> <p>9.9.1.3 Energy Content 228</p> <p>9.9.1.4 Water Content 228</p> <p>9.9.1.5 Corrosion Protection 228</p> <p>9.9.1.6 Denaturant and Denaturant Content 229</p> <p>9.9.1.7 Material Compatibility 229</p> <p>9.9.1.8 Lubricity 229</p> <p>9.9.1.9 Emissions 229</p> <p>9.10 Well-to-Wheels Analysis for Fuel Ethanol and Ethanol Gasoline Blends 230</p> <p>9.10.1 Pathways 230</p> <p>9.10.1.1 Sugar Beet to Ethanol 230</p> <p>9.10.1.2 Wheat to Ethanol 231</p> <p>9.10.1.3 Straw to Ethanol 231</p> <p>9.11 WTT Analysis for Bioethanol 236</p> <p>9.12 WTWAnalysis 237</p> <p>References 240</p> <p><b>10 Methanol </b><b>245<br /></b><i>Martin Bertau,Michael Kraft, Ludolf Plass, and Hans-JürgenWernicke</i></p> <p>10.1 Introduction 248</p> <p>10.2 Physical and Chemical Properties 249</p> <p>10.3 Production of Methanol 249</p> <p>10.3.1 Methanol Production Capacities and Markets 250</p> <p>10.3.2 ConventionalMethanol Production Processes 252</p> <p>10.3.2.1 Synthesis Gas Generation 252</p> <p>10.3.2.2 Methanol Synthesis 255</p> <p>10.3.2.3 Liquid Phase Methanol Synthesis (LPMEOH<sup>®</sup>) 258</p> <p>10.3.2.4 Methanol Distillation 258</p> <p>10.3.3 Renewable Methanol Production Processes 259</p> <p>10.3.3.1 CO<sub>2</sub> – Hydrogenation 260</p> <p>10.4 Methanol as Fuel 261</p> <p>10.4.1 History 263</p> <p>10.4.2 Uses 264</p> <p>10.4.2.1 Methanol as a Fuel for Otto Engines 264</p> <p>10.4.2.2 Vehicle Developments 265</p> <p>10.4.2.3 Conclusions 268</p> <p>10.4.2.4 Methanol as Marine Fuel 269</p> <p>10.4.3 Safety Aspects 270</p> <p>10.4.3.1 Explosion and Fire Control 270</p> <p>10.4.3.2 Fire Prevention 271</p> <p>10.4.3.3 Fire Fighting 271</p> <p>10.4.3.4 Small-scale Storage 271</p> <p>10.4.3.5 Large-scale Storage 271</p> <p>10.4.3.6 Large-scale Transportation 272</p> <p>10.4.3.7 Safety Regulations Governing Transportation 272</p> <p>10.4.3.8 Methanol as a Hazard 272</p> <p>10.5 Methanol-based Derivatives as Fuels and Fuel Additives 273</p> <p>10.5.1 Methanol-to-Gasoline (MTG) 274</p> <p>10.5.2 Methyl <i>tert</i>-Butyl Ether (MTBE) 276</p> <p>10.5.3 <i>tert</i>-Amyl Methyl Ether (TAME) 278</p> <p>10.5.4 Dimethyl Ether (DME) 279</p> <p>10.5.5 Oxymethylene Ether (OME) 281</p> <p>10.5.6 Dimethyl Carbonate (DMC) and Methyl Formate (MF) 285</p> <p>10.6 Economic Aspects 289</p> <p>10.6.1 Gas-based Methanol 289</p> <p>10.6.2 Coal-based Methanol 289</p> <p>10.6.3 Biomass-based Methanol 291</p> <p>10.6.4 Renewable Methanol Based on the Recycle of Carbon Dioxide 292</p> <p>10.7 Outlook 297</p> <p>References 297</p> <p><b>11 2,5-Dimethylfuran (DMF) and 2-Methylfuran (MF) </b><b>307<br /></b><i>Andrea Schütze</i></p> <p>11.1 Synthesis of Dimethylfuran 307</p> <p>11.2 Properties of 2,5-Dimethylfuran and Methylfuran 309</p> <p>11.3 Combustion and Emissions 311</p> <p>References 312</p> <p><b>12 Alternative Biofuel Options – Diesel </b><b>315<br /></b><i>Andrea Schütze</i></p> <p>12.1 Biomass-to-Liquids (BTL) 315</p> <p>12.2 Biodiesel (FAME) 316</p> <p>12.2.1 Production 318</p> <p>12.2.1.1 Introduction 318</p> <p>12.2.1.2 Industrial Process 321</p> <p>12.2.1.3 Feedstock 322</p> <p>12.2.1.4 Microalgae 324</p> <p>12.2.2 AnalyticalMethods 326</p> <p>12.2.2.1 Ester Content and Fatty Acid Composition 326</p> <p>12.2.2.2 Polyunsaturated Methyl Esters Content 327</p> <p>12.2.2.3 Glycerol and Glyceride Content 328</p> <p>12.2.3 Fuel Standards 332</p> <p>12.2.3.1 United States 332</p> <p>12.2.3.2 Europe 336</p> <p>12.2.4 Fuel Properties 337</p> <p>12.2.4.1 Cetane Number 338</p> <p>12.2.4.2 Density and Energy Content 339</p> <p>12.2.4.3 Kinematic Viscosity 339</p> <p>12.2.4.4 Cold Temperature Properties 339</p> <p>12.2.4.5 Filterability 341</p> <p>12.2.4.6 Distillation 341</p> <p>12.2.4.7 Fuel Stability 341</p> <p>12.2.4.8 Water Content and Sediment 343</p> <p>12.2.4.9 Lubricity 343</p> <p>12.2.4.10 Material Compatibility 343</p> <p>12.2.4.11 Engine Deposits 344</p> <p>12.2.4.12 Emissions 345</p> <p>12.3 Vegetable Oils (VO) 345</p> <p>12.3.1 Production 346</p> <p>12.3.2 Fuel Properties 346</p> <p>12.3.2.1 Kinematic Viscosity 347</p> <p>12.3.2.2 Cetane Number 348</p> <p>12.3.2.3 Flash Point 348</p> <p>12.3.2.4 Carbon Residue 348</p> <p>12.3.2.5 Heating Value 348</p> <p>12.3.2.6 Density 348</p> <p>12.3.2.7 Iodine Number 349</p> <p>12.3.2.8 Fuel Stability 349</p> <p>12.3.2.9 Calcium, Magnesium, and Phosphorus 350</p> <p>12.3.2.10 Total Contamination andWater Content 350</p> <p>12.3.2.11 Acid Value 350</p> <p>12.3.3 Fuel Standards 350</p> <p>12.4 Hydrotreated Vegetable Oils 351</p> <p>12.4.1 Production 352</p> <p>12.4.1.1 Process 352</p> <p>12.4.1.2 Production Plants 354</p> <p>12.4.2 Fuel Standard and Properties 354</p> <p>12.4.2.1 Density and Energy Content 355</p> <p>12.4.2.2 Distillation Characteristics 355</p> <p>12.4.2.3 Cold Temperature Properties 356</p> <p>12.4.2.4 Cetane Number 356</p> <p>12.4.2.5 Fuel Stability 356</p> <p>12.4.2.6 Lubricity 357</p> <p>12.4.2.7 Material Compatibility 357</p> <p>12.4.2.8 Emissions and Combustion 357</p> <p>12.5 Well-to-Wheel Analysis of FAME and HVO Fuels 357</p> <p>12.5.1 FAME Fuels 359</p> <p>12.5.1.1 WTT Analysis 359</p> <p>12.5.1.2 WTWAnalysis 361</p> <p>12.5.2 HVO Fuels 363</p> <p>12.5.2.1 WTT Analysis 363</p> <p>12.5.2.2 WTWAnalysis 364</p> <p>References 366</p> <p><b>13 Hydrogen </b><b>373<br /></b><i>Lalit M. Das</i></p> <p>13.1 Introduction 373</p> <p>13.2 Life Cycle Analysis 373</p> <p>13.3 Hydrogen Production 374</p> <p>13.4 Historical Overview of Hydrogen Engine: Research and Development 375</p> <p>13.5 Properties of Hydrogen which Influence Engine Combustion 377</p> <p>13.6 Undesirable Combustion Phenomena 381</p> <p>13.7 Design Criteria for Hydrogen Engines 382</p> <p>13.8 Hydrogen-fueledWankel Engine 384</p> <p>13.9 Performance Characteristic of a Hydrogen-fueled SI Engine 385</p> <p>13.10 Exhaust Emissions 386</p> <p>13.11 Combustion Characteristics 387</p> <p>13.12 Hydrogen Use in CI Engines 389</p> <p>13.13 Hydrogen-CNG Blend 391</p> <p>13.14 Safety Criteria for Hydrogen Engines 392</p> <p>13.15 Hydrogen Detection 393</p> <p>13.16 Storage of Hydrogen 393</p> <p>13.17 Hydrogen Transportation and Distribution 394</p> <p>13.18 Hydrogen Vehicles based on Internal Combustion Engine 395</p> <p>13.19 Conclusion 398</p> <p>References 398</p> <p><b>14 Octane Enhancers </b><b>403<br /></b><i>Marco Di Girolamo, Maura Brianti, and MarioMarchionna</i></p> <p>14.1 Introduction 403</p> <p>14.2 Technical Information 405</p> <p>14.2.1 Combustion in Otto Engines 405</p> <p>14.2.2 Knock Phenomena 406</p> <p>14.2.3 Octane Number 406</p> <p>14.3 Types of Octane Enhancers 409</p> <p>14.4 Metal-containing Additives 409</p> <p>14.4.1 Alkyl Lead Compounds 412</p> <p>14.4.2 Methylcyclopentadienyl Manganese Tricarbonyl 414</p> <p>14.5 Ashless Octane Enhancers 415</p> <p>14.5.1 Heteroatom-based Components 415</p> <p>14.5.1.1 History of Fuel Oxygenates 417</p> <p>14.5.1.2 Properties of Oxygenates 420</p> <p>14.5.1.3 Production 424</p> <p>14.5.1.4 Toxicology 426</p> <p>14.5.2 Pure Hydrocarbon Components 427</p> <p>References 428</p> <p>Further Reading 430</p> <p><b>15 Hybrid and Electrified Powertrains </b><b>431<br /></b><i>Jakob Andert, MaximilianWick, Rene Savelsberg, andMichael Stapelbroek</i></p> <p>15.1 Introduction 431</p> <p>15.2 Classification 432</p> <p>15.2.1 Topologies 432</p> <p>15.2.1.1 Serial Hybrids 433</p> <p>15.2.1.2 Parallel Hybrids 434</p> <p>15.2.1.3 Power-split Hybrids 435</p> <p>15.2.2 Degree of Hybridization 436</p> <p>15.3 Functionalities 437</p> <p>15.3.1 Regenerative Braking 437</p> <p>15.3.2 Load Point Shift/Boosting 438</p> <p>15.3.3 E-drive and Sailing 439</p> <p>15.4 Battery 440</p> <p>15.4.1 NiMH Batteries 441</p> <p>15.4.2 Li-ion Batteries 442</p> <p>15.5 Energy Management 443</p> <p>15.6 Market Situation and Outlook 444</p> <p>References 444</p> <p><b>16 Fuel Cells </b><b>447<br /></b><i>Sören Tinz, Steffen Dirkes,MariusWalters, and Jakob Andert</i></p> <p>16.1 Transportation Applications 447</p> <p>16.2 Fundamentals 449</p> <p>16.2.1 Auxiliaries 452</p> <p>16.2.1.1 Air Supply System 452</p> <p>16.2.1.2 Hydrogen Supply System 454</p> <p>16.2.1.3 Cooling Circuit 454</p> <p>16.2.1.4 HV Architecture 455</p> <p>16.2.1.5 Controls 455</p> <p>16.2.1.6 Integrated System Design 455</p> <p>16.2.2 Onboard Hydrogen Storage 456</p> <p>16.3 Costs, Durability, and Reliability 457</p> <p>16.4 Cold and Freeze Start 459</p> <p>16.5 Efficiency 459</p> <p>16.6 Summary 460</p> <p>References 460</p> <p><b>Part II Automobile Exhaust Control </b><b>465</b></p> <p><b>17 Introduction </b><b>467<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p>Reference 469</p> <p><b>18 Pollutant Formation and Limitation </b><b>471<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p>18.1 Carbon Monoxide 471</p> <p>18.2 Hydrocarbons 471</p> <p>18.3 Oxides of Nitrogen (NO<i><sub>x</sub></i>) 472</p> <p>18.4 Particulate Emissions 472</p> <p>18.5 Carbon Dioxide (CO<sub>2</sub>) 473</p> <p>18.6 Sulfur Compounds 473</p> <p>Reference 474</p> <p><b>19 Catalytic Exhaust Aftertreatment, General Concepts </b><b>475<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p>19.1 The Physical Design of the Catalytic Converter 475</p> <p>19.1.1 Ceramic Monoliths 477</p> <p>19.1.2 MetallicMonoliths 477</p> <p>19.1.3 Particulate Filters 478</p> <p>19.1.4 Extruded Catalysts 478</p> <p>19.2 TheWashcoat 478</p> <p>19.3 The Catalytic Material 480</p> <p>19.4 Production of Catalysts 480</p> <p>References 481</p> <p><b>20 Catalytic Aftertreatment of Stoichiometric Exhaust Gas </b><b>483<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p>20.1 Three-way Catalysts 484</p> <p>20.2 Oxygen Storage in Three-way Catalysts 485</p> <p>20.3 Precious Metals inThree-way Catalysis 487</p> <p>References 487</p> <p><b>21 Exhaust Aftertreatment for Diesel Vehicles </b><b>489<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p>21.1 The Diesel Oxidation Catalyst 489</p> <p>21.1.1 Oxidation of Particulate Emissions 490</p> <p>21.1.2 Oxidation of SO<sub>2</sub> 490</p> <p>21.1.3 Oxidation of NO 490</p> <p>21.1.4 Particulate Filter Regeneration 490</p> <p>21.1.5 Pt/Pd Dispersion 491</p> <p>21.2 The Particulate Filter 491</p> <p>21.2.1 Soot Oxidation by Oxygen 492</p> <p>21.2.2 Soot Oxidation by NO<sub>2 </sub>492</p> <p>21.2.3 Ash Load 493</p> <p>21.2.4 Open Filter Systems 493</p> <p>21.3 NO<i><sub>x</sub> </i>Treatment of Oxygen-rich Exhaust 494</p> <p>21.3.1 HC–DeNO<i><sub>x</sub> </i>494</p> <p>21.3.2 The NO<i><sub>x </sub></i>Adsorber Catalyst 495</p> <p>21.3.3 Selective Catalytic Reduction (SCR) with Ammonia 496</p> <p>21.3.4 NH<sub>3</sub> Generation Onboard 496</p> <p>21.3.5 Vanadium SCR Catalysts 497</p> <p>21.3.6 Zeolite-based SCR Catalysts 498</p> <p>21.3.7 Oxidation Catalyst Upstream of the SCR Catalyst 498</p> <p><b>22 Exhaust Aftertreatment for Lean-burn Gasoline Engines </b><b>499<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p><b>23 Conclusion and Outlook </b><b>501<br /></b><i>Martin Votsmeier, Thomas Kreuzer, Jürgen Gieshoff, Gerhard Lepperhoff, and Barbara Elvers</i></p> <p><b>Part III Aviation Fuels </b><b>503</b></p> <p><b>24 Aviation Turbine Fuels </b><b>505<br /></b><i>Geoff J. Bishop and Barbara Elvers</i></p> <p>24.1 History 505</p> <p>24.1.1 Fuel Types and Specifications 505</p> <p>24.1.1.1 Specification Requirements 507</p> <p>24.1.1.2 Fuel Properties 507</p> <p>24.1.1.3 Nonspecification Properties 516</p> <p>24.1.2 Production 518</p> <p>24.1.2.1 Fuel 518</p> <p>24.1.2.2 Additives 520</p> <p>24.1.3 Handling, Storage, and Transportation 522</p> <p>24.1.3.1 System Descriptions 522</p> <p>24.1.3.2 Contamination-removal Equipment 522</p> <p>24.1.4 Legal Aspects 523</p> <p>24.1.5 Environmental Aspects 523</p> <p>24.1.6 Economic Aspects 523</p> <p>24.1.7 Future Trends 524</p> <p>24.1.7.1 Petroleum-Derived Fuels 524</p> <p>24.1.7.2 Alternative Fuels 524</p> <p>References 525</p> <p>Further Reading 527</p> <p><b>25 Aviation Gasoline (Avgas) </b><b>529<br /></b><i>Geoff J. Bishop and Barbara Elvers</i></p> <p>25.1 History 530</p> <p>25.2 Avgas Grades 530</p> <p>25.2.1 Avgas 100 530</p> <p>25.2.2 Avgas 100LL 530</p> <p>25.2.3 Avgas 100VLL 531</p> <p>25.2.4 Avgas UL82 531</p> <p>25.2.5 Avgas UL87 531</p> <p>25.2.6 Avgas UL91 531</p> <p>Reference 531</p> <p>Further Reading 531</p> <p><b>Part IV Marine Fuels </b><b>533</b></p> <p><b>26 Marine Fuels </b><b>535<br /></b><i>Christopher FriedrichWirz, Torsten Mundt, and Klaus Reders</i></p> <p>26.1 History 535</p> <p>26.2 Specifications 536</p> <p>26.3 Composition 536</p> <p>26.4 Properties 537</p> <p>26.4.1 Distillate Fuels 537</p> <p>26.4.2 Residual Fuels 537</p> <p>Reference 540</p> <p>Index 541</p>
<p><b>Barbara Elvers</b>, PhD, served in a variety of roles in publishing, first as a freelance translator of textbooks in chemistry, and served as editor in chief for the Ullmann’s Encyclopedia between 1987 and 2020.</p> <p><b>Andrea Schütze</b>, PhD, is the former global innovation manager of the automotive fuel division of Shell Global Solutions. Based in Hamburg she started as head of the fuels laboratory and moved on to a variety of roles in the fuels and lubricants research & development.</p>
<p><b>A guide to industrially relevant products and processes for transportation fuels</b></p> <p>The <i>Handbook of Fuels</i> offers a comprehensive review of the wide variety of fuels used to power vehicles, aircraft and ships and examines the processes to produce these fuels. The updated second edition reflects the growing importance of fuels and fuel additives from renewable sources. New chapters include information on current production technology and use of bioethanol, biomethanol and biomass-to-liquid fuels. The book also reviews novel additives and performanace enhancers for conventional engines and fuels for novel bybrid engines. <p>This comprehensive resource contains critical information on the legal, safety, and environmental issues associated with the production and use of fuels as well as reviewing important secondary aspects of the use and production of fuels. This authoritative guide includes contributions from authors who are long-standing contributors to the <i>Ullmann’s Encyclopedia</i>, the world’s most trusted reference for industrial chemistry. This important guide: <p><ul><li>Contains an updated edition of the authoritative resource to the production and use of fuels used for transportation</li> <li>Includes information that has been selected to reflect only commercially relevant products and processes</li> <li>Presents contributions from a team of noted experts in the field</li> <li>Offers the most recent developments in fuels and additives from renewable sources</li></ul> <p>Written for professionals in the fields of fossil and renewable fuels, engine design, and transportation, <i>Handbook of Fuels</i> is the comprehensive resource that has been revised to reflect the recent developments in fuels used for transportation.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €