Details

C-H Activation for Asymmetric Synthesis


C-H Activation for Asymmetric Synthesis


1. Aufl.

von: Françoise Colobert, Joanna Wencel-Delord

124,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.08.2019
ISBN/EAN: 9783527810864
Sprache: englisch
Anzahl Seiten: 296

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry <br> <br> Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. <br> <br> Presented in two parts?asymmetric activation of C(sp3)-H bonds and stereoselective synthesis implying activation of C(sp2)-H bonds?CH-Activation for Asymmetric Synthesis showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp3)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp3)?H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp2)?H bond activation; amongst other methods. <br> <br> -Covers one of the most rapidly developing fields in organic synthesis and catalysis <br> -Clearly structured in two parts (activation of sp3- and activation of sp2-H bonds) <br> -Edited by two leading experts in C-H activation in asymmetric synthesis <br> <br> CH-Activation for Asymmetric Synthesis will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry. <br>
<p>Foreword xi</p> <p><b>Part I Asymmetric Activation of C(sp<sup>3</sup>)—H Bonds </b><b>1</b></p> <p><b>Part I.A C(sp<sup>3</sup>)—H Bond Insertion by Metal Carbenoids and Nitrenoids </b><b>2</b></p> <p><b>1 Stereoselective C—C Bond-Forming Reactions Through C(sp<sup>3</sup>)—H Bond Insertion of Metal Carbenoids </b><b>3<br /> </b><i>Aoife M. Buckley, Thomas A. Brouder, Alan Ford, and Anita R. Maguire</i></p> <p>1.1 Introduction 3</p> <p>1.2 Diazo Compounds 4</p> <p>1.3 Mechanistic Understanding 5</p> <p>1.4 Catalysts 7</p> <p>1.4.1 Copper 7</p> <p>1.4.1.1 Bisoxazoline and Schiff Base 7</p> <p>1.4.2 Rhodium 8</p> <p>1.4.2.1 Rhodium(II) Carboxylates 9</p> <p>1.4.2.2 Rhodium(II) Carboxamidates 10</p> <p>1.4.2.3 Ortho-metalated Complexes 11</p> <p>1.4.3 Iridium and Ruthenium 11</p> <p>1.5 Intramolecular C(sp<sup>3</sup>)—H Bond Insertion 11</p> <p>1.5.1 Chemoselectivity 13</p> <p>1.5.1.1 Catalyst Effects 13</p> <p>1.5.1.2 Substrate Effects 14</p> <p>1.5.2 Regioselectivity 16</p> <p>1.5.2.1 Formation of Three-Membered Rings 17</p> <p>1.5.2.2 Formation of Four-Membered Rings 18</p> <p>1.5.2.3 Formation of Five-Membered Rings 20</p> <p>1.5.2.4 Formation of Six-Membered Rings 20</p> <p>1.5.3 Diastereoselectivity 23</p> <p>1.5.3.1 Substrate Effects 23</p> <p>1.5.3.2 Catalyst Effects 25</p> <p>1.5.4 Enantioselectivity 25</p> <p>1.6 Intermolecular C(sp<sup>3</sup>)—H Bond Insertion 30</p> <p>1.6.1 Chemoselectivity 30</p> <p>1.6.1.1 Diazo Compounds 32</p> <p>1.6.1.2 Catalyst Effects 34</p> <p>1.6.1.3 Substrate Functional Groups 35</p> <p>1.6.2 Regioselectivity 36</p> <p>1.6.2.1 Substrate Effects 36</p> <p>1.6.2.2 Catalyst Effects 38</p> <p>1.6.2.3 Diazo Compound Effects 39</p> <p>1.6.3 Diastereoselectivity 39</p> <p>1.6.3.1 Substrate Effects 39</p> <p>1.6.3.2 Catalyst Effects 42</p> <p>1.6.4 Enantioselectivity 43</p> <p>1.7 Conclusion 45</p> <p>References 45</p> <p><b>2 Stereoselective C—N Bond-Forming Reactions Through C(sp<sup>3</sup>)—H Bond Insertion of Metal Nitrenoids </b><b>51<br /> </b><i>Philippe Dauban, Romain Rey-Rodriguez, and Ali Nasrallah</i></p> <p>2.1 Introduction 51</p> <p>2.2 Historical Background 52</p> <p>2.2.1 Seminal Studies in Catalytic C(sp<sup>3</sup>)–H Amination 52</p> <p>2.2.2 Mechanistic and Stereochemical Issues 56</p> <p>2.3 Catalytic Stereoselective C(sp<sup>3</sup>)–H Amination Reactions with Iminoiodinanes 60</p> <p>2.3.1 Catalytic Intermolecular Enantioselective Reactions (Chirality Only on the Metal Complex) 60</p> <p>2.3.2 Catalytic Intramolecular Enantioselective Reactions 63</p> <p>2.3.3 Catalytic Intermolecular Diastereoselective Reactions (Chirality on the Metal Complex and the Nitrene Precursor) 66</p> <p>2.4 Catalytic Stereoselective C(sp<sup>3</sup>)–H Amination Reactions with Azides 67</p> <p>2.4.1 Transition Metal-Catalyzed C(sp<sup>3</sup>)–H Amination Reactions 67</p> <p>2.4.2 Enzymatic C(sp<sup>3</sup>)–H Amination Reactions 68</p> <p>2.5 Catalytic Stereoselective C(sp<sup>3</sup>)–H Amination Reactions with<i> N</i>-(Sulfonyloxy)carbamates 70</p> <p>2.6 Conclusion 72</p> <p>References 72</p> <p><b>Part I.B C(sp<sup>3</sup>)–H Activation as Stereodiscriminant Step </b><b>77</b></p> <p><b>3 Enantioselective Intra- and Intermolecular Couplings </b><b>79<br /> </b><i>Qiaoqiao Teng and Wei-Liang Duan</i></p> <p>3.1 Introduction 79</p> <p>3.2 Enantioselective Intramolecular Couplings of Aliphatic Substrates 79</p> <p>3.2.1 C–C Coupling 79</p> <p>3.2.2 C–X Coupling 89</p> <p>3.3 Enantioselective Intermolecular Couplings of Aliphatic Substrates 90</p> <p>3.3.1 Pd Catalysis 91</p> <p>3.3.2 Rh Catalysis 102</p> <p>3.3.3 Ir Catalysis 102</p> <p>3.4 Conclusion 104</p> <p>References 105</p> <p><b>4 Substrate-Controlled Transformation: Diastereoselective Functionalization </b><b>107<br /> </b><i>Sheng-Yi Yan, Bin Liu, and Bing-Feng Shi</i></p> <p>4.1 Introduction 107</p> <p>4.2 Diastereoselective Functionalizations of<i> N</i>-Phthaloyl-α-Amino Acids 108</p> <p>4.2.1 Diastereoselective β-C(sp<sup>3</sup>)–H Functionalizations of <i>N</i>-Phthaloyl-α-Amino Acids 108</p> <p>4.2.1.1 Bidentate Directing Group 108</p> <p>4.2.1.2 Monodentate Directing Group 114</p> <p>4.2.2 Diastereoselective γ-C(sp<sup>3</sup>)–H Functionalization of α-Amino Acid Derivatives 114</p> <p>4.3 Diastereoselective C–H Activation Controlled by Chiral Auxiliary 116</p> <p>4.4 Diastereoselective C(sp<sup>3</sup>)–H Functionalization of Conformationally Restricted Cyclic Substrates 121</p> <p>4.5 Summary and Conclusions 127</p> <p>References 128</p> <p><b>Part II Stereoselective Synthesis Implying Activation of C(sp<sup>2</sup>)—H Bonds </b><b>131</b></p> <p><b>5 Planar Chirality via C(sp<sup>2</sup>)–H Activation Involved in Stereodiscriminant Step </b><b>133<br /> </b><i>Qing Gu and Shu-Li You</i></p> <p>5.1 Introduction 133</p> <p>5.2 Diastereoselective Synthesis of Planar Chiral Ferrocenes 134</p> <p>5.3 Enantioselective Synthesis of Planar Chiral Ferrocenes 134</p> <p>5.3.1 Pd(II)-Catalyzed Direct C—H Bond Functionalization 134</p> <p>5.3.2 Pd(0)-Catalyzed Direct C—H Bond Functionalization 140</p> <p>5.3.3 Ir/Rh-Catalyzed Direct C—H Bond Functionalization 144</p> <p>5.3.4 Au/Pt-Catalyzed Direct C—H Bond Functionalization 146</p> <p>5.4 Conclusion 147</p> <p>References 148</p> <p><b>6 Axial Chirality via C(sp<sup>2</sup>)–H Activation Involved in Stereodiscriminant Step </b><b>151<br /> </b><i>Quentin Dherbassy, Joanna Wencel-Delord, and Françoise Colobert</i></p> <p>6.1 Introduction 151</p> <p>6.2 Asymmetric Coupling of Two Arenes by Oxidative Dimerization 152</p> <p>6.2.1 Copper-Catalyzed Reactions 153</p> <p>6.2.2 Vanadium-Catalyzed Reactions 154</p> <p>6.2.3 Iron-Catalyzed Reactions 155</p> <p>6.2.4 Application in the Synthesis of Natural Products 155</p> <p>6.2.5 Conclusion 156</p> <p>6.3 Stereoselective C–H Functionalization of Prochiral or Racemic Biaryls 158</p> <p>6.3.1 Asymmetric C–H Alkylation of Naphthylpyridines 158</p> <p>6.3.2 Diastereoselective C–H Functionalization Using a Chiral Directing Group 159</p> <p>6.3.2.1 Sulfinyl as Chiral Directing Group 159</p> <p>6.3.2.2 Phosphates as Chiral Directing Group 162</p> <p>6.3.3 Enantioselective C–H Functionalization of Racemic Biaryl 163</p> <p>6.3.4 Stereoselective C–H Functionalization Using a Transient Chiral Directing Group 165</p> <p>6.3.5 Conclusion 167</p> <p>6.4 Atroposelective Cross-Coupling of Two Moieties 167</p> <p>6.4.1 Pd-Catalyzed C–H Arylation of Thiophene Derivatives 167</p> <p>6.4.2 Pd-Catalyzed C–H Arylation of Biaryl Sulfoxides 169</p> <p>6.4.3 Rh-Catalyzed C–H Arylation of Diazonaphthoquinones 171</p> <p>6.4.4 Conclusion 172</p> <p>6.5 General Conclusion 172</p> <p>References 172</p> <p><b>7 Central Chirality via Asymmetric C(sp<sup>2</sup>)–H Activation Implying Desymmetrization and Kinetic Resolution </b><b>175<br /></b><i>Soufyan Jerhaoui, Françoise Colobert, and Joanna Wencel-Delord</i></p> <p>7.1 Synthesis of C-Stereogenic Molecules via C(sp<sup>2</sup>)–H Functionalization 175</p> <p>7.1.1 Desymmetrization 175</p> <p>7.1.2 Kinetic Resolution 182</p> <p>7.2 Synthesis of P-Central Chiral Molecules via C(sp<sup>2</sup>)–H Functionalization 183</p> <p>7.3 Synthesis of Chiral Organosilicon Molecules via C(sp<sup>2</sup>)–H Functionalization 187</p> <p>7.4 Synthesis of S-Chiral Molecules via C(sp<sup>2</sup>)–H Functionalization 189</p> <p>7.5 Conclusions 190</p> <p>References 191</p> <p><b>8 Non-stereoselective C(sp<sup>2</sup>)–H Activation Followed by Selective Functionalization of Metallacyclic Intermediate </b><b>193<br /> </b><i>Xiaohong Chen, Xue Gong, Bo Wang, and Guoyong Song</i></p> <p>8.1 Introduction 193</p> <p>8.2 Intramolecular Couplings 194</p> <p>8.2.1 Palladium and Nickel Catalysis 194</p> <p>8.2.2 Rhodium Catalysis 196</p> <p>8.2.3 Iridium Catalysis 200</p> <p>8.2.4 Enantioselective Hydroacylation 203</p> <p>8.3 Intermolecular Couplings 210</p> <p>8.3.1 Rhodium Catalysis 210</p> <p>8.3.2 Iridium Catalysis 219</p> <p>8.3.3 Other Metal Catalysis 226</p> <p>8.4 Conclusion 231</p> <p>Acknowledgments 231</p> <p>References 231</p> <p><b>9 Diastereoselective Formation of Alkenes Through C(sp<sup>2</sup>)—H Bond Activation </b><b>239<br /> </b><i>Parthasarathy Gandeepan and Lutz Ackermann</i></p> <p>9.1 Introduction 239</p> <p>9.2 C–H Activation with Alkenes 241</p> <p>9.2.1 Nondirected C–H Alkenylation 241</p> <p>9.2.2 Directed C–H Alkenylation 244</p> <p>9.3 C–H Activation with Alkenyl (Pseudo)halides 250</p> <p>9.4 Hydroarylation 252</p> <p>9.4.1 Hydroarylation of Alkynes 252</p> <p>9.4.2 Hydroarylation of Allenes 257</p> <p>9.5 Hydroacylation 261</p> <p>9.5.1 Hydroacylation of Alkynes 261</p> <p>9.5.2 Hydroacylation of Allenes 263</p> <p>9.6 Conclusion 264</p> <p>References 265</p> <p>Index 275</p>
<p><b><i>Françoise Colobert, PhD,</i></b> <i>is director of the team Syncat: Synthesis and asymmetric catalysis of the Chemistry Engineering High School ECPM at the University of Strasbourg. Her current research interests are oriented towards homogeneous catalysis, in particular C-H activation directed by sulfoxides.</i> <p><b><i>Joanna Wencel-Delord, PhD,</i></b> <i>was educated in chemistry at the Ecole Nationale Supérieure de Chimie de Rennes, France. Her research focuses on the transition metal-catalyzed asymmetric C-H activation.</i>
<p><b>Provides, in one handbook, comprehensive coverage of one of the hottest topics in stereoselective chemistry</b> <p>Written by leading international authors in the field, this book introduces readers to C-H activation in asymmetric synthesis along with all of its facets. It presents stereoselective C-H functionalization with a broad coverage, from outer-sphere to inner-sphere C-H bond activation, and from the control of olefin geometry to the induction of point, planar and axial chirality. Moreover, methods wherein asymmetry is introduced either during the C-H activation or in a different elementary step are discussed. <p>Presented in two parts—asymmetric activation of C(sp<sup>3</sup>)-H bonds and stereoselective synthesis implying activation of C(sp<sup>2</sup>)-H bonds<i>—C-H Activation for Asymmetric Synthesis</i><b><i></i></b> showcases the diversity of stereogenic elements, which can now be constructed by C-H activation methods. Chapters in Part 1 cover: C(sp<sup>3</sup>)-H bond insertion by metal carbenoids and nitrenoids; stereoselective C-C bond and C-N bond forming reactions through C(sp<sup>3</sup>)–H bond insertion of metal nitrenoids; enantioselective intra- and intermolecular couplings; and more. Part 2 looks at: C-H activation involved in stereodiscriminant step; planar chirality; diastereoselective formation of alkenes through C(sp<sup>2</sup>)–H bond activation; amongst other methods.<b></b> <ul> <li>Covers one of the most rapidly developing fields in organic synthesis and catalysis</li> <li>Clearly structured in two parts (activation of sp<sup>3</sup>- and activation of sp<sup>2</sup>-H bonds)</li> <li>Edited by two leading experts in C-H activation in asymmetric synthesis</li> </ul> <p><i>C-H Activation for Asymmetric Synthesis</i><b><i></i></b> will be of high interest to chemists in academia, as well as those in the pharmaceutical and agrochemical industry.

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €