Details

Vertical External Cavity Surface Emitting Lasers


Vertical External Cavity Surface Emitting Lasers

VECSEL Technology and Applications
1. Aufl.

von: Michael Jetter, Peter Michler

162,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 16.09.2021
ISBN/EAN: 9783527807949
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>Vertical External Cavity Surface Emitting Lasers</b> <p><b>Provides comprehensive coverage of the advancement of vertical-external-cavity surface-emitting lasers</b> <p>Vertical-external-cavity surface-emitting lasers (VECSELs) emit coherent light from the infrared to the visible spectral range with high power output. Recent years have seen new device developments – such as the mode-locked integrated (MIXSEL) and the membrane external-cavity surface emitting laser (MECSEL) – expand the application of VECSELs to include laser cooling, spectroscopy, telecommunications, biophotonics, and laser-based displays and projectors. <p>In <i>Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications,</i> leading international research groups provide a comprehensive, fully up-to-date account of all fundamental and technological aspects of vertical external cavity surface emitting lasers. This unique book reviews the physics and technology of optically-pumped disk lasers and discusses the latest developments of VECSEL devices in different wavelength ranges. Topics include OP-VECSEL physics, continuous wave (CW) lasers, frequency doubling, carrier dynamics in SESAMs, and characterization of nonlinear lensing in VECSEL gain samples. This authoritative volume: <ul><li>Summarizes new concepts of DBR-free and MECSEL lasers for the first time</li> <li>Covers the mode-locking concept and its application</li> <li>Provides an overview of the emerging concept of self-mode locking</li> <li>Describes the development of next-generation OPS laser products</li></ul> <p><i>Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications</i> is an invaluable resource for laser specialists, semiconductor physicists, optical industry professionals, spectroscopists, telecommunications engineers and industrial physicists.
<p>Preface xiii</p> <p><b>Part I Continuous wave VECSEL </b><b>1</b></p> <p><b>1 History of Optically Pumped Semiconductor Lasers – VECSELs </b><b>3<br /> </b><i>Mark E. Kuznetsov</i></p> <p>1.1 Introduction 3</p> <p>1.2 OPS-VECSELs: Concept and History 4</p> <p>1.3 Micracor 8</p> <p>1.4 OPSL Development at Micracor: First Steps 11</p> <p>1.5 OPS Development at Micracor: Pushing Forward 14</p> <p>1.6 OPS Development at Micracor: Final Chapter 16</p> <p>1.7 VECSELs beyond Micracor 20</p> <p>References 22</p> <p><b>2 VECSELs in the Wavelength Range 1.18–1.55 </b><b>𝛍m </b><b>27</b><br /> <i>Antti Rantamäki and Mircea Guina</i></p> <p>2.1 Introduction 27</p> <p>2.2 Overview of GaAs-based Gain Mirror Technologies for Long-wavelength Infrared VECSELs 28</p> <p>2.2.1 InGaAs QWs 28</p> <p>2.2.2 GaInNAs QWs 28</p> <p>2.2.3 InAs QDs 30</p> <p>2.2.4 GaAsSb QWs 31</p> <p>2.3 Overview of InP-based Gain Mirror Technologies for Long-wavelength Infrared VECSELs 32</p> <p>2.3.1 Monolithic InP-based DBRs 32</p> <p>2.3.2 Dielectric and Metamorphic DBRs 33</p> <p>2.3.3 Semiconductor-dielectric-metal Compound Mirrors 34</p> <p>2.3.4 Wafer-bonded GaAs-based DBRs 37</p> <p>2.3.4.1 DirectWafer Bonding 39</p> <p>2.3.4.2 Low Temperature Bonding 44</p> <p>2.3.5 Gain Structures in Transmission 47</p> <p>2.4 Conclusion 50</p> <p>References 50</p> <p><b>3 Single-frequency and High Power Operation of 2–3 Micron VECSEL 63<br /> </b><i>Marcel Rattunde, Peter Holl, and Joachim Wagner</i></p> <p>3.1 Introduction 63</p> <p>3.2 Semiconductor Lasers for the MIR Range 64</p> <p>3.3 III-Sb Material System 66</p> <p>3.4 2–3 μm VECSEL Design 68</p> <p>3.4.1 Standard Barrier Pumped Structures 68</p> <p>3.4.2 In-well Pumping 69</p> <p>3.4.3 Low Quantum Deficit Barrier Pumping 70</p> <p>3.5 Mounting Technologies 72</p> <p>3.5.1 Intracavity Heatspreader 74</p> <p>3.5.2 Thin Device 76</p> <p>3.5.3 Double-sided Heatspreader 77</p> <p>3.6 Single-frequency Operation (SFO) of 2–3 μm VECSEL 78</p> <p>3.6.1 Key Parameters for Single-Frequency Operation 79</p> <p>3.6.2 SFO with Intracavity Heatspreader 81</p> <p>3.6.2.1 Laser Cavity Setup 82</p> <p>3.6.2.2 Wavelength Tuning 83</p> <p>3.6.2.3 Emission Linewidth 85</p> <p>3.6.2.4 Active Stabilization and Influence of Sampling Time 88</p> <p>3.6.2.5 Conclusion 90</p> <p>3.6.3 SFO withWedged Heatspreader 91</p> <p>3.6.4 SFO with Microcavity VECSELs 92</p> <p>3.6.5 SFO without Intracavity Heatspreader 94</p> <p>3.7 Conclusion 99</p> <p>References 101</p> <p><b>4 Highly Coherent Single-Frequency Tunable VeCSELs: Concept, Technology, and Physical Study </b><b>109<br /> </b><i>Mikhael Myara</i></p> <p>4.1 Introduction: Lasers for Applications 109</p> <p>4.2 The “Ideal” Laser 111</p> <p>4.3 Toward Single-Mode Operation 113</p> <p>4.4 Toward High Coherence 118</p> <p>4.5 The VeCSEL in the State of the Art 121</p> <p>4.6 Highly Coherent, Tunable VeCSEL Design 122</p> <p>4.7 Limits and Solutions 125</p> <p>4.8 Highly Coherent, Tunable VeCSEL: Main Characteristics 127</p> <p>4.9 Ultrahigh-Purity Single-mode Operation 129</p> <p>4.10 Spatial Coherence 131</p> <p>4.11 Time Domain Coherence and Noise 131</p> <p>4.11.1 Noise in Photonics: Basics 131</p> <p>4.11.2 Intensity Noise of a VeCSEL 135</p> <p>4.11.3 Phase Noise, Frequency Noise, and Linewidth of a VeCSEL 136</p> <p>4.12 Conclusion 139</p> <p>Acknowledgements 140</p> <p>References 140</p> <p><b>5 Terahertz Metasurface Quantum Cascade VECSELs </b><b>145</b><br /> <i>Benjamin S. Williams and Luyao Xu</i></p> <p>5.1 Introduction 145</p> <p>5.1.1 Waveguides for THz QC-Lasers 146</p> <p>5.1.2 Overview of Metasurface QC-VECSEL Concept 148</p> <p>5.2 Metasurface Design 149</p> <p>5.3 QC-VECSEL Model 152</p> <p>5.3.1 Confinement Factor 156</p> <p>5.3.2 Metasurface and Cavity Optimization 157</p> <p>5.4 THz QC-VECSEL Performance: Power, Efficiency, and Beam Quality 159</p> <p>5.4.1 Effect of Metasurface on Spectrum 160</p> <p>5.4.2 Effect of Output Coupler 161</p> <p>5.4.3 Focusing Metasurface VECSEL 162</p> <p>5.4.4 Intra-cryostat Cavity QC-VECSEL 165</p> <p>5.5 Polarization Control in QC-VECSELs 166</p> <p>5.6 Conclusion 169</p> <p>References 170</p> <p><b>6 DBR-free Optically Pumped Semiconductor Disk Lasers </b><b>175</b><br /> <i>Alexander R. Albrecht, Zhou Yang, and Mansoor Sheik-Bahae</i></p> <p>6.1 Introduction 175</p> <p>6.2 DBR-free Semiconductor Disk Lasers 176</p> <p>6.2.1 Opportunities and Advantages 177</p> <p>6.2.2 Thermal Analysis 178</p> <p>6.2.3 Longitudinal Mode Structure and Broadband Tunability 180</p> <p>6.3 Device Fabrication 182</p> <p>6.4 DBR-free SDL Implementation 185</p> <p>6.4.1 High Power Operation 185</p> <p>6.4.2 Broad Tunability 187</p> <p>6.4.3 Wafer-scale Processing 189</p> <p>6.5 Novel Concepts 189</p> <p>6.6 Conclusions 192</p> <p>References 193</p> <p><b>7 Optically Pumped Red-Emitting AlGaInP-VECSELs and the MECSEL Concept </b><b>197<br /> </b><i>Hermann Kahle, Michael Jetter, and Peter Michler</i></p> <p>7.1 Introduction 197</p> <p>7.2 Direct Red-Emitting AlGaInP-VECSELs and Second-Harmonic Generation 199</p> <p>7.2.1 GaInP QuantumWells and the AlGaInP Material System 199</p> <p>7.2.2 GaInP QuantumWell VECSELs: A Comparison 201</p> <p>7.2.2.1 Architecture of the Semiconductor Structures 202</p> <p>7.2.2.2 Experimental Setup 203</p> <p>7.2.2.3 Characterization Results 204</p> <p>7.2.2.4 Internal Efficiency 204</p> <p>7.2.3 Power Scaling via QuantumWell and Multi-Pass Pumping 208</p> <p>7.2.3.1 QuantumWell Pumping 208</p> <p>7.2.3.2 Multi-Pass Pumping 210</p> <p>7.2.4 Second-Harmonic Generation into the UV-A Spectral Range 211</p> <p>7.3 The Membrane External-Cavity Surface-Emitting Laser (MECSEL) 212</p> <p>7.3.1 The Semiconductor Active Region Membrane 213</p> <p>7.3.2 MECSEL Setup 215</p> <p>7.3.3 MECSEL Characterization 216</p> <p>7.3.3.1 Output Power Measurements 216</p> <p>7.3.3.2 Beam Profile and Beam Quality Factor 218</p> <p>7.3.3.3 Spectra 218</p> <p>7.4 Conclusions 221</p> <p>References 221</p> <p><b>Part II Mode-Locked VECSEL </b><b>229</b></p> <p><b>8 Recent Advances in Mode-Locked Vertical-External-Cavity Surface-Emitting Lasers </b><b>231</b><br /> <i>Anne C. Tropper</i></p> <p>8.1 Introduction 231</p> <p>8.1.1 Ultrafast Lasers 232</p> <p>8.1.2 Ultrafast Semiconductor Lasers; Diodes, VECSELs, and MIXSELs 233</p> <p>8.2 Ultrafast Pulse Formation in a Surface-Emitting Semiconductor Laser 235</p> <p>8.2.1 Surface-Emitting Gain Chip Design 235</p> <p>8.2.2 Gain Filtering 238</p> <p>8.2.3 Gain Saturation and Recovery 239</p> <p>8.2.4 Saturable Absorbers for ML-VECSELs and MIXSELs 241</p> <p>8.3 Performance of Passively Mode-Locked Semiconductor Lasers 244</p> <p>8.3.1 Pulse Duration 244</p> <p>8.3.2 Pulse Repetition Rate 246</p> <p>8.3.3 Mode-Locked VECSELs: Visible to Mid-Infrared 248</p> <p>8.3.4 Simulation and Modeling 249</p> <p>8.3.5 Noise 251</p> <p>8.4 Applications 252</p> <p>8.4.1 Biological Imaging 252</p> <p>8.4.2 Quantum Optics 253</p> <p>8.4.3 Supercontinuum Generation and Frequency Combs 253</p> <p>8.4.4 Terahertz Imaging and Spectroscopy 254</p> <p>8.5 Summary and Outlook 255</p> <p>References 256</p> <p><b>9 Ultrafast Nonequilibrium Carrier Dynamics in Semiconductor Laser Mode-Locking </b><b>267<br /> </b><i>I. Kilen, J. Hader, S.W. Koch, and J.V. Moloney</i></p> <p>9.1 Introduction 267</p> <p>9.2 Background Theory 269</p> <p>9.2.1 Pulse Propagation 269</p> <p>9.2.2 Microscopic Theory 273</p> <p>9.3 Domain Setup/Modeling 277</p> <p>9.3.1 The VECSEL Cavity 277</p> <p>9.3.2 The Gain Region 278</p> <p>9.3.3 The Relaxation Rates and the Round Trip Time 280</p> <p>9.3.4 Noise Buildup to Pulse 281</p> <p>9.4 Numerical Results 282</p> <p>9.4.1 Single-Pass Investigation of QWs and SAMs on the Order of Second Born–Markov Approximation 282</p> <p>9.4.1.1 Inverted QuantumWell 282</p> <p>9.4.1.2 Saturable Absorber 285</p> <p>9.4.2 Mode-Locked VECSELs 288</p> <p>9.4.2.1 Gain, Absorption, and Dispersion 288</p> <p>9.4.2.2 Pulse Buildup and Initial Conditions 290</p> <p>9.4.2.3 Self-Phase Modulation from QWs 290</p> <p>9.4.2.4 Mode-Locked Pulse Family 291</p> <p>9.4.2.5 Influence of Loss on the Mode-Locked Pulse 294</p> <p>9.4.2.6 Limits on the Shortest Possible Pulse and the Hysteresis Effect 296</p> <p>9.5 Outlook 299</p> <p>References 300</p> <p><b>10 Mode-Locked AlGaInP VECSEL for the Red and UV Spectral Range </b><b>305<br /> </b><i>Roman Bek, Michael Jetter, and Peter Michler</i></p> <p>10.1 Introduction 305</p> <p>10.2 Epitaxial Layer Design of AlGaInP-SESAM Structures 306</p> <p>10.2.1 QuantumWell SESAMs 306</p> <p>10.2.2 Quantum Dot SESAMs 307</p> <p>10.3 Temporal Response of AlGaInP SESAMs 307</p> <p>10.4 Cavity Designs 309</p> <p>10.5 Characterization Methods 310</p> <p>10.6 Mode-Locking Results 311</p> <p>10.6.1 QuantumWell Mode-Locked AlGaInP VECSELs 311</p> <p>10.6.1.1 High Output Power 311</p> <p>10.6.1.2 Femtosecond Operation 312</p> <p>10.6.2 Quantum Dot Mode-Locked AlGaInP VECSELs 314</p> <p>10.7 Second Harmonic Generation into the UV Spectral Range 315</p> <p>10.8 Summary and Outlook 317</p> <p>References 318</p> <p><b>11 Colliding Pulse Mode-locked VECSEL </b><b>321</b><br /> <i>Alexandre Laurain</i></p> <p>11.1 Introduction 321</p> <p>11.2 Principle of Colliding Pulse Modelocking 322</p> <p>11.3 Requirements for Stable Colliding Pulse Modelocking 324</p> <p>11.3.1 Pulse Timing 324</p> <p>11.3.2 Gain Recovery and Pumping Rate 324</p> <p>11.3.3 Polarization 326</p> <p>11.3.4 ModeWaist and Saturation Fluence 326</p> <p>11.4 Design of an Ultrafast CPM VECSEL 327</p> <p>11.4.1 The Optical Cavity 327</p> <p>11.4.2 The Gain Structure 328</p> <p>11.4.3 The SESAM 333</p> <p>11.5 Modelocking Results 335</p> <p>11.5.1 Robustness of the Modelocking Regime 335</p> <p>11.5.2 Cross Correlation of the Output Beams 336</p> <p>11.5.3 Pulse Duration Optimization 338</p> <p>11.5.4 Multipulse Regime 340</p> <p>11.6 Pulse Interactions in the Saturable Absorber 341</p> <p>11.6.1 Field Intensity Distribution 341</p> <p>11.6.2 Saturable Absorption Model 343</p> <p>11.6.3 Dynamics of the Carrier Density Distribution 345</p> <p>11.6.4 Absorption Losses and Pulse Shaping 347</p> <p>11.6.5 Saturation Fluence of the Absorber 349</p> <p>11.6.6 Power Balance in CPM Operation 350</p> <p>11.7 Summary and Outlook 352</p> <p>Acknowledgments 353</p> <p>References 353</p> <p><b>12 Self-Mode-Locked Semiconductor Disk Lasers </b><b>357</b><br /> <i>Arash Rahimi-Iman</i></p> <p>12.1 Introduction 357</p> <p>12.2 Mode-Locking Techniques for Optically Pumped SDLs at a Glance 358</p> <p>12.3 History of Saturable-Absorber-Free Pulsed VECSELs 360</p> <p>12.3.1 Self-Mode-Locked Optically Pumped VECSELs 360</p> <p>12.3.1.1 Once Upon a Time – Beyond Magic 361</p> <p>12.3.1.2 Mode Competition – A Struggle for Acceptance 363</p> <p>12.3.1.3 More Than a Flash in the Pan – TriggeredWave of Results 364</p> <p>12.3.2 Harmonic Self-Mode-Locking 366</p> <p>12.3.3 Self-Mode-Locking Quantum-Dot VECSEL 368</p> <p>12.3.4 SML Cavity Configurations 369</p> <p>12.3.5 SML VECSEL at OtherWavelengths 371</p> <p>12.4 Overview on SESAM-Free Mode-Locking Achievements 373</p> <p>12.4.1 Spotlight on SML VECSELs 373</p> <p>12.4.1.1 Pulse Duration 373</p> <p>12.4.1.2 Peak Power 374</p> <p>12.4.1.3 Repetition Rate 375</p> <p>12.4.2 SESAM-Free Alternatives to SML VECSEL 375</p> <p>12.4.2.1 Graphene or Carbon Nanotube Saturable Absorber Mode-Locked VECSELs 375</p> <p>12.4.2.2 SESAM-Free VECSEL Design with Intracavity Kerr Medium 375</p> <p>12.5 Investigations into the Mechanisms and Outlook 376</p> <p>12.5.1 First Studies Concerning the Mechanisms Behind SML 376</p> <p>12.5.2 Z-Scan Measurements of the Nonlinear Refractive Index in a VECSEL Chip 377</p> <p>12.5.3 Applications and Expected Advances 380</p> <p>Acknowledgments 381</p> <p>References 382</p> <p>Index 387 </p>
<p><i>Michael Jetter is Leader of the Epitaxy and Laser Group, Institute for Semiconductor Optics and Functional Interfaces, University of Stuttgart, Germany. He is expert in III-V semiconductor epitaxy and semiconductor lasers.</i> <p><i>Peter Michler is Professor and Head of the Institute for Semiconductor Optics and Functional Interfaces, University of Stuttgart, Germany. His research concentrates on quantum dots, non-classical light sources and semiconductor lasers, semiconductor based quantum optics and photonic quantum technologies.</i>
<p><b>Provides comprehensive coverage of the advancement of vertical-external-cavity surface-emitting lasers</b> <p>Vertical-external-cavity surface-emitting lasers (VECSELs) emit coherent light from the infrared to the visible spectral range with high power output. Recent years have seen new device developments – such as the mode-locked integrated (MIXSEL) and the membrane external-cavity surface emitting laser (MECSEL) – expand the application of VECSELs to include laser cooling, spectroscopy, telecommunications, biophotonics, and laser-based displays and projectors. <p>In <i>Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications,</i> leading international research groups provide a comprehensive, fully up-to-date account of all fundamental and technological aspects of vertical external cavity surface emitting lasers. This unique book reviews the physics and technology of optically-pumped disk lasers and discusses the latest developments of VECSEL devices in different wavelength ranges. Topics include OP-VECSEL physics, continuous wave (CW) lasers, frequency doubling, carrier dynamics in SESAMs, and characterization of nonlinear lensing in VECSEL gain samples. This authoritative volume: <ul><li>Summarizes new concepts of DBR-free and MECSEL lasers for the first time</li> <li>Covers the mode-locking concept and its application</li> <li>Provides an overview of the emerging concept of self-mode locking</li> <li>Describes the development of next-generation OPS laser products</li></ul> <p><i>Vertical External Cavity Surface Emitting Lasers: VECSEL Technology and Applications</i> is an invaluable resource for laser specialists, semiconductor physicists, optical industry professionals, spectroscopists, telecommunications engineers and industrial physicists.

Diese Produkte könnten Sie auch interessieren:

Stuttgarter Lasertage '05
Stuttgarter Lasertage '05
von: Friedrich Dausinger, Friedemann Lichtner, Thomas Graf
PDF ebook
88,99 €
Infrarotthermographie
Infrarotthermographie
von: Norbert Schuster, Valentin G. Kolobrodov
PDF ebook
184,99 €
Optik
Optik
von: Heinz Haferkorn
PDF ebook
87,99 €