Details

Natural Products Targeting Clinically Relevant Enzymes


Natural Products Targeting Clinically Relevant Enzymes


1. Aufl.

von: Paula B. Andrade, Patrícia Valentão, David M. Pereira

142,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.08.2017
ISBN/EAN: 9783527805938
Sprache: englisch
Anzahl Seiten: 352

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The past decade has seen the reappearance of natural products as a valuable source of potent therapeutics. Here, experts on bioactive natural products cover the full spectrum of clinically relevant enzymes that are known to be targeted by natural products. Key enzymes include acetylcholine esterase, angiotensin-I-converting enzyme, cyclooxygenase, dihydrofolate reductase, phospholipase A2, respiratory complexes, and many more.<br> By connecting the diversity of medicinal natural product sources with their potential clinical applications, this volume serves as a companion for the medicinal chemist looking for innovative small molecule compounds as well as for pharmacologist interested in the clinical effects and mode of action of herbal and traditional medicines.
<p>Lists of Contributors <i>xiii</i></p> <p><b>1 Natural Products as Enzyme Inhibitors </b><b><i>1<br /></i></b><i>David M. Pereira, Catarina Andrade, Patricia Valentao, and Paula B. Andrade</i></p> <p>1.1 Why Are Natural Products Good Enzyme Inhibitors? <i>1</i></p> <p>1.2 Drawbacks of Natural Products <i>4</i></p> <p>1.3 The Future of Natural Products Drug Discovery <i>5</i></p> <p>1.3.1 New Sources and New Production Methods <i>5</i></p> <p>1.3.2 New Strategies for Delivery <i>9</i></p> <p>1.3.3 New Targets?/Drug Repurposing <i>12</i></p> <p>1.4 Conclusion <i>13</i></p> <p>References <i>13</i></p> <p><b>2 Molecular Targets of Clinically Relevant Natural Products from Filamentous Marine Cyanobacteria </b><b><i>19<br /></i></b><i>Lik T. Tan</i></p> <p>2.1 Introduction <i>19</i></p> <p>2.2 Histone Deacetylase Inhibitors <i>20</i></p> <p>2.2.1 Largazole <i>20</i></p> <p>2.2.2 Santacruzamate A <i>22</i></p> <p>2.3 Proteasome Inhibitors <i>23</i></p> <p>2.3.1 Carmaphycins <i>23</i></p> <p>2.4 Protease Enzymes <i>24</i></p> <p>2.4.1 Serine Protease Inhibitors <i>24</i></p> <p>2.4.2 Falcipain Inhibitors <i>27</i></p> <p>2.4.2.1 Gallinamide A <i>27</i></p> <p>2.4.3 Cathepsin Inhibitors <i>28</i></p> <p>2.4.4 β?-Secretase 1 (BACE1) Inhibitors <i>30</i></p> <p>2.4.4.1 Tasiamide B <i>30</i></p> <p>2.5 Protein Kinase C Modulators <i>30</i></p> <p>2.5.1 Aplysiatoxins <i>30</i></p> <p>2.6 Interference of the Actin and Microtubule Filaments <i>31</i></p> <p>2.6.1 Dolastatins 10/15 <i>31</i></p> <p>2.6.2 Bisebromoamide <i>32</i></p> <p>2.7 Sec61 Protein Translocation Channel Inhibitors <i>32</i></p> <p>2.7.1 Apratoxin A <i>32</i></p> <p>2.8 Prohibitin Inhibitors <i>34</i></p> <p>2.8.1 Aurilide <i>34</i></p> <p>2.9 Sodium Channels Modulators <i>35</i></p> <p>2.10 Conclusions <i>35</i></p> <p>References <i>36</i></p> <p><b>3 Natural Angiotensin Converting Enzyme (ACE) Inhibitors with Antihypertensive Properties </b><b><i>45<br /></i></b><i>Maria Margalef, Francisca I. Bravo, Anna Arola-Arnal, and Begona Muguerza</i></p> <p>3.1 Introduction <i>45</i></p> <p>3.2 Mechanisms of Blood Pressure Regulation <i>46</i></p> <p>3.2.1 Renin–Angiotensin–Aldosterone System <i>46</i></p> <p>3.3 The Treatment of Hypertension <i>47</i></p> <p>3.3.1 Angiotensin Converting Enzyme Inhibitors <i>47</i></p> <p>3.4 Natural Products as Angiotensin Converting Enzyme Inhibitors <i>50</i></p> <p>3.4.1 Polyphenols <i>50</i></p> <p>3.4.2 Protein Derived Peptides <i>55</i></p> <p>3.5 Conclusions <i>58</i></p> <p>References <i>58</i></p> <p><b>4 Phospholipase A</b><b>2 </b><b>Inhibitors of Marine Origin </b><b><i>69<br /></i></b><i>Tania Silva, David M. Pereira, Patricia Valentao, and Paula B. Andrade</i></p> <p>4.1 Relevance of Marine Organisms <i>69</i></p> <p>4.2 Inflammation <i>69</i></p> <p>4.2.1 Phospholipase A2 <i>70</i></p> <p>4.3 Marine Molecules as PLA2 Inhibitors <i>72</i></p> <p>4.3.1 Sponge?]Derived Metabolites <i>72</i></p> <p>4.3.2 Metabolites from Other Organisms <i>83</i></p> <p>4.4 Conclusion <i>86</i></p> <p>References <i>86</i></p> <p><b>5 β-Secretase (BACE1) Inhibitors from Natural Products </b><b><i>93<br /></i></b><i>Wei</i><i>?-</i><i>Shuo Fang, Deyang Sun, Shuang Yang, and Na Guo</i></p> <p>5.1Introduction <i>93</i></p> <p>5.2 Flavonoids <i>94</i></p> <p>5.2.1 Flavones, Flavonols and Flavone Glycosides <i>95</i></p> <p>5.2.2 Dihydroflavonoids <i>96</i></p> <p>5.2.3 Biflavonoids <i>98</i></p> <p>5.2.4 Chalcones <i>100</i></p> <p>5.2.5 Isoflavonoids <i>102</i></p> <p>5.2.6 Catechins <i>102</i></p> <p>5.2.7 Xanthones <i>104</i></p> <p>5.3 Chromones <i>104</i></p> <p>5.4 Phenolic Acids and Tannins <i>105</i></p> <p>5.4.1 Phenol Acids <i>105</i></p> <p>5.4.2 Tannins <i>106</i></p> <p>5.4.3 Simple Phenol Derivatives and Polyphenols <i>107</i></p> <p>5.5 Stilbenes and Derivatives <i>110</i></p> <p>5.6 Coumarins <i>112</i></p> <p>5.7 Benzoquinones and Anthraquinones <i>114</i></p> <p>5.8 Alkaloids <i>116</i></p> <p>5.9 Terpenes <i>118</i></p> <p>5.10 Lignans <i>120</i></p> <p>5.11 Fatty Acid <i>121</i></p> <p>5.12 Saccharides, Peptides and Amino Acid Derivatives <i>121</i></p> <p>5.13 BACE1 Inhibitory Active Extracts of Natural Products <i>122</i></p> <p>5.14 Bioassays for the Discovery of BACE1 Inhibitors <i>124</i></p> <p>5.15 Prospective <i>124</i></p> <p>5.16 Acknowledgements <i>125</i></p> <p>References <i>125</i></p> <p><b>6 Hypoglycaemic Effects of Plants Food Constituents via Inhibition of Carbohydrate-Hydrolysing Enzymes: From Chemistry to Future Applications </b><b><i>135<br /></i></b><i>Monica R. Loizzo, Marco Bonesi, Seyed M. Nabavi, Eduardo Sobarzo</i><i>?]</i><i>Sanchez, Luca Rastrelli, and Rosa Tundis</i></p> <p>6.1 Introduction <i>135</i></p> <p>6.2 α-Amylase <i>136</i></p> <p>6.3 α-Glucosidase <i>137</i></p> <p>6.4 Hypoglycaemic Natural Compounds <i>137</i></p> <p>6.4.1 Flavonoids <i>139</i></p> <p>6.4.2 Phenolic Acids <i>141</i></p> <p>6.4.3 Terpenoids <i>142</i></p> <p>6.4.4 Alkaloids <i>147</i></p> <p>6.4.5 Tannins <i>150</i></p> <p>6.4.5.1 Ellagitannins <i>150</i></p> <p>6.4.6 Miscellaneous <i>152</i></p> <p>6.5 Conclusions and Future Perspective <i>152</i></p> <p>Abbreviations <i>153</i></p> <p>References <i>153</i></p> <p><b>7 Natural Products Targeting Clinically Relevant Enzymes of Eicosanoid Biosynthesis Implicated in Inflammation and Cancer </b><b><i>163<br /></i></b><i>Gorla V. Reddy, Nagendra S. Yarla, Shobha Ediga, Dinesh K. Tiwari, Naresh Kumar, Sandhya Singh, Vasundhra Bhandari, Anupam Bishayee, Chintalapally V. Rao, and Pallu Reddanna</i></p> <p>7.1 Introduction <i>163</i></p> <p>7.2 Eicosanoid Biosynthetic Pathways <i>164</i></p> <p>7.2.1 Phospholipases <i>165</i></p> <p>7.2.2 Cyclooxygenases <i>166</i></p> <p>7.2.3 Lipoxygenases <i>166</i></p> <p>7.2.4 Cytochrome P450 (CYP)?]dependent Monooxygenases <i>166</i></p> <p>7.3 Eicosanoid Biosynthetic Pathways in Inflammation and Cancer <i>167</i></p> <p>7.3.1 Role of PLA2s in Inflammation and Cancer <i>167</i></p> <p>7.3.2 Role of COXs in Inflammation and Cancer <i>168</i></p> <p>7.3.3 Role of LOXs in Inflammation and Cancer <i>169</i></p> <p>7.3.4 Role of CYP?]dependent Monooxygenases in Inflammation and Cancer <i>170</i></p> <p>7.4 Natural Products as Anti-inflammatory Agents <i>170</i></p> <p>7.4.1 Natural Products from Plant Origin <i>170</i></p> <p>7.4.1.1 Baicalein <i>170</i></p> <p>7.4.1.2 Berberine <i>171</i></p> <p>7.4.1.3 Chebulagic Acid <i>172</i></p> <p>7.4.1.4 Curcumin <i>172</i></p> <p>7.4.1.5 Ellagic Acid <i>173</i></p> <p>7.4.1.6 Epigallocatechin?]3?]Gallate <i>174</i></p> <p>7.4.1.7 Eugenol <i>174</i></p> <p>7.4.1.8 Fisetin <i>174</i></p> <p>7.4.1.9 Gallic Acid <i>175</i></p> <p>7.4.1.10 Genistein <i>175</i></p> <p>7.4.1.11 Guggulsterone <i>176</i></p> <p>7.4.1.12 Piperine <i>176</i></p> <p>7.4.1.13 Quercetin <i>177</i></p> <p>7.4.1.14 Resveratrol <i>178</i></p> <p>7.4.1.15 Silibinin <i>178</i></p> <p>7.4.1.16 Terpenoids <i>179</i></p> <p>7.4.1.17 Triptolids <i>180</i></p> <p>7.4.1.18 Ursolic Acid (UA) <i>181</i></p> <p>7.4.2 Natural Products from Marine Origin <i>182</i></p> <p>7.4.2.1 Axinelline A <i>182</i></p> <p>7.4.2.2 Scalaradial <i>182</i></p> <p>7.4.2.3 Tetrapetalone <i>183</i></p> <p>7.4.3 Natural Products from Microorganisms <i>183</i></p> <p>7.4.3.1 C?]Phycocyanin <i>183</i></p> <p>7.4.3.2 Kojic Acid <i>184</i></p> <p>7.4.3.3 Lobaric Acid <i>185</i></p> <p>7.5 Conclusions and Future Directions <i>185</i></p> <p>References <i>186</i></p> <p><b>8 Anti-HIV Natural Products </b><b><i>209<br /></i></b><i>Tzi B. Ng, Jack H. Wong, Chi F. Cheung, Charlene C. W. Ng, Tak F. Tse, and Helen Chan</i></p> <p>8.1 Introduction <i>209</i></p> <p>8.2 Ribosome-Inactivating Proteins <i>209</i></p> <p>8.3 Reverse Transcriptase Inhibitors <i>210</i></p> <p>8.3.1 Antifungal Proteins <i>210</i></p> <p>8.3.2 Defensins and Defensin?]Like Anti?]Fungal Peptides <i>210</i></p> <p>8.3.3 Cathelicidins <i>210</i></p> <p>8.3.4 Whey Proteins <i>211</i></p> <p>8.3.5 Proteases and Protease Inhibitors <i>211</i></p> <p>8.3.6 Lectins <i>211</i></p> <p>8.3.7 Laccases and Ribonucleases <i>212</i></p> <p>8.3.8 Polysaccharides and Polysaccharopeptides <i>212</i></p> <p>8.3.9 Other HIV?]Reverse Transcriptase Inhibitors <i>212</i></p> <p>8.4 Inhibitors of HIV Reverse Transcriptase Associated RNase H <i>213</i></p> <p>8.5 HIV-1 Protease Inhibitors <i>213</i></p> <p>8.6 HIV-1 Integrase Inhibitors <i>214</i></p> <p>8.7 Discussion <i>214</i></p> <p>Acknowledgements <i>216</i></p> <p>References <i>216</i></p> <p><b>9 Natural Inhibitors of Mitochondrial Respiratory Chain: Therapeutic and Toxicological Implications </b><b><i>225<br /></i></b><i>Fernando Pelaez, Nuria de Pedro, and Jose R. Tormo</i></p> <p>9.1 Introduction: The Structure of the Electron Transport Chain <i>225</i></p> <p>9.2 Natural Inhibitors of the Respiratory Chain <i>228</i></p> <p>9.2.1 Complex I Inhibitors <i>228</i></p> <p>9.2.1.1 Acetogenins from Annonaceae as Complex I Inhibitors <i>231</i></p> <p>9.2.2 Complex II Inhibitors <i>233</i></p> <p>9.2.3 Complex III Inhibitors <i>234</i></p> <p>9.2.4 Complex IV Inhibitors <i>235</i></p> <p>9.2.5 Complex V Inhibitors <i>237</i></p> <p>9.3 Therapeutic, Agrochemical and Toxicological Implications <i>239</i></p> <p>9.3.1 ETC Inhibitors as Fungicides <i>239</i></p> <p>9.3.2 ETC Inhibitors as Insecticides, Acaricides, and Anthelmintic Agents <i>240</i></p> <p>9.3.3 ETC Inhibitors with Activity Against Protozoan Parasites <i>241</i></p> <p>9.3.4 Diabetes and ETC Inhibition <i>241</i></p> <p>9.3.5 ETC Inhibition as a Therapeutic Strategy in Cancer <i>242</i></p> <p>9.3.5.1 Mechanistic Insights on the Anti?]Tumour Properties of ETC Inhibitors <i>244</i></p> <p>9.3.6 Toxicological Implications of ETC Inhibition <i>245</i></p> <p>9.3.6.1 Neurotoxicity and ETC Inhibition <i>245</i></p> <p>9.3.6.2 Other Toxicity Aspects of ETC Inhibition <i>246</i></p> <p>9.4Conclusions <i>247</i></p> <p>References <i>247</i></p> <p><b>10 Targeting Enzymatic Pathways with Marine-Derived Clinical Agents </b><b><i>255<br /></i></b><i>Renato B. Pereira, Ramesh Dasari, Florence Lefranc, Alexander Kornienko, Robert Kiss, and Nelson G. M. Gomes</i></p> <p>10.1 Marine Environment as an Established Source of Drug Candidates <i>255</i></p> <p>10.2 Enzyme-Targeting Derived Effects of Marine-Derived Approved Drugs <i>256</i></p> <p>10.3 Marine-Derived Agents in Clinical Development Targeting Relevant Enzymatic Pathways <i>261</i></p> <p>10.4 Concluding Remarks <i>264</i></p> <p>Acknowledgements <i>265</i></p> <p>References <i>265</i></p> <p><b>11 Anti-Malarial Drug Discovery: New Enzyme Inhibitors </b><b><i>277<br /></i></b><i>Raghu Raj and Vipan Kumar</i></p> <p>11.1 Introduction <i>277</i></p> <p>11.2 Falcipain (FP-2) Inhibitors <i>278</i></p> <p>11.3 Purine Nucleoside Phosphorylase Inhibitors (PNP) <i>284</i></p> <p>11.4 Dihydrofolate Reductase (DHFR) and Thymidylate Synthase (TS) Inhibitors <i>286</i></p> <p>11.5 Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferase Inhibitors <i>290</i></p> <p>11.6 Conclusion <i>293</i></p> <p>References <i>293</i></p> <p><b>12 Natural Plant-Derived Acetylcholinesterase Inhibitors: Relevance for Alzheimer’s Disease </b><b><i>297<br /></i></b><i>Nady Braidy, Anne Poljak, Tharusha Jayasena, and Perminder Sachdev</i></p> <p>12.1 Introduction <i>297</i></p> <p>12.2 Natural Acetylcholinesterase Inhibitors <i>299</i></p> <p>12.2.1 Alkaloid Acetylcholinesterase Inhibitors <i>302</i></p> <p>12.2.1.1 Rutaceae <i>302</i></p> <p>12.2.1.2 Nelumbonaceae <i>303</i></p> <p>12.2.1.3 Papaveraceae <i>303</i></p> <p>12.2.1.4 Menispermaceae <i>303</i></p> <p>12.2.1.5 Magnoliaceae <i>304</i></p> <p>12.2.1.6 Apocynaceae <i>304</i></p> <p>12.2.1.7 Amaryllidaceae <i>304</i></p> <p>12.2.1.8 Lycopodiaceae <i>305</i></p> <p>12.2.1.9 Buxaceae <i>305</i></p> <p>12.2.1.10 Liliaceae <i>306</i></p> <p>12.2.2 Non?]Alkaloid Acetylcholinesterase Inhibitors <i>306</i></p> <p>12.2.2.1 Asparagaceae <i>306</i></p> <p>12.2.2.2 Chenopodiaceae <i>306</i></p> <p>12.2.2.3 Clusiaceae <i>307</i></p> <p>12.2.2.4 Gentianaceae <i>307</i></p> <p>12.2.2.5 Fabaceae <i>307</i></p> <p>12.2.2.6 Lamiaceae <i>307</i></p> <p>12.2.2.7 Moraceae <i>308</i></p> <p>12.2.2.8 Iridaceae <i>308</i></p> <p>12.2.2.9 Zygophyllaceae <i>308</i></p> <p>12.2.2.10 Sterculiaceae <i>308</i></p> <p>12.2.2.11 Combretaceae <i>309</i></p> <p>12.2.2.12 Myristicaceae <i>309</i></p> <p>12.2.2.13 Anacardiaceae <i>309</i></p> <p>12.2.2.14 Nelumbonaceae <i>309</i></p> <p>12.3 Conclusion <i>309</i></p> <p>Acknowledgements <i>309</i></p> <p>References <i>310</i></p> <p>Index <i>319</i></p>
PAULA B. ANDRADE is Associate Professor at the Faculty of Pharmacy of the University of Porto. As head of the Pharmacognosy lab, she also coordinates the natural products group of the REQUIMTE/LAQV, an institute active in Green Chemistry, and evaluates research projects for various international entities. Her research on bioactive substances originating from matrices of marine and terrestrial origin was published in more than 30 book chapters and more than 300 articles in international journals.<br> <br> PATRICIA VALENT?O obtained her PhD in Pharmaceutical Sciences at the University of Porto for work on pharmacognosy. She was appointed Assistant Professor at the Faculty of Pharmacy, University of Porto in 2007. Her research focuses on qualitative and quantitative metabolite profiling of terrestrial and marine natural matrices with the goal to reveal composition/activity relationships of these compounds in various clinically-relevant areas. Patricia Valent?o is member of the REQUIMTE/LAQV Institute of Green Chemistry and editorial board member of the "EJournal of Chemistry". She (co)authored more than 30 book chapters and more than 250 articles in international journals.<br> <br> DAVID M. PEREIRA obtained his PhD in Pharmaceutical Sciences at the University of Porto for work on phytochemistry and pharmacognosy. In 2014 he was appointed Assistant Professor at the Faculty of Pharmacy of the same university. David Pereira edited one book, contributed more than 20 book chapters and over 60 papers covering research areas of natural products, inflammation, drug discovery and analytical techniques. He also serves in the Editorial Board of several journals related to natural products and analytical techniques. He is appointed expert in the "Global Burden of Disease" program of the University of Washington, and reviewer/consultant in Biomedical Sciences for several European institutions.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €