Details

Quantum Information


Quantum Information

From Foundations to Quantum Technology Applications
2. Aufl.

von: Dagmar Bruss, Gerd Leuchs

282,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 05.02.2019
ISBN/EAN: 9783527805792
Sprache: englisch
Anzahl Seiten: 512

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. It contains problems and exercises and is therefore ideally suited for students and lecturers in physics and informatics, as well as experimental and theoretical physicists in academia and industry who work in the field of quantum information processing.<br style="font-family: Arial; font-size: 13.333333015441895px;" /><br style="font-family: Arial; font-size: 13.333333015441895px;" />The second edition incorporates important recent developments such as quantum metrology, quantum correlations beyond entanglement, and advances in quantum computing with solid state devices.
<p>Preface to the New Edition xvii</p> <p>Preface to Lectures on Quantum Information (2006) xix</p> <p><b>Part I Classical Information Theory 1</b></p> <p><b>1 Classical Information Theory and Classical Error Correction 3<br /></b><i>Markus Grassl</i></p> <p>1.1 Introduction 3</p> <p>1.2 Basics of Classical Information Theory 3</p> <p>1.3 Linear Block Codes 10</p> <p>1.4 Further Aspects 16</p> <p>References 16</p> <p><b>2 Computational Complexity 19<br /></b><i>Stephan Mertens</i></p> <p>2.1 Basics 19</p> <p>2.2 Algorithms and Time Complexity 21</p> <p>2.3 Tractable Trails: The Class P 22</p> <p>2.4 Intractable Itineraries: The Class NP 24</p> <p>2.5 Reductions and NP-Completeness 29</p> <p>2.6 P Versus NP 31</p> <p>2.7 Optimization 34</p> <p>2.8 Complexity Zoo 37</p> <p>References 37</p> <p><b>Part II Foundations of Quantum Information Theory 39</b></p> <p><b>3 Discrete Quantum States versus Continuous Variables 41<br /></b><i>Jens Eisert</i></p> <p>3.1 Introduction 41</p> <p>3.2 Finite-Dimensional Quantum Systems 42</p> <p>3.3 Continuous-Variables 45</p> <p>References 53</p> <p><b>4 Approximate Quantum Cloning 55<br /></b><i>Dagmar Bruß and Chiara Macchiavello</i></p> <p>4.1 Introduction 55</p> <p>4.2 The No-Cloning Theorem 56</p> <p>4.3 State-Dependent Cloning 57</p> <p>4.4 Phase-Covariant Cloning 63</p> <p>4.5 Universal Cloning 65</p> <p>4.6 Asymmetric Cloning 69</p> <p>4.7 Probabilistic Cloning 70</p> <p>4.8 Experimental Quantum Cloning 70</p> <p>4.9 Summary and Outlook 71</p> <p>Exercises 72</p> <p>References 73</p> <p><b>5 Channels and Maps 75<br /></b><i>M. Keyl and R. F.Werner</i></p> <p>5.1 Introduction 75</p> <p>5.2 Completely Positive Maps 75</p> <p>5.3 The Choi–Jamiolkowski Isomorphism 78</p> <p>5.4 The Stinespring Dilation Theorem 80</p> <p>5.5 Classical Systems as a Special Case 83</p> <p>5.6 Channels with Memory 84</p> <p>5.7 Examples 86</p> <p>Problems 89</p> <p>References 90</p> <p><b>6 Quantum Algorithms 91<br /></b><i>Julia Kempe</i></p> <p>6.1 Introduction 91</p> <p>6.2 Precursors 93</p> <p>6.3 Shor’s Factoring Algorithm 97</p> <p>6.4 Grover’s Algorithm 100</p> <p>6.5 Other Algorithms 101</p> <p>6.6 Recent Developments 103</p> <p>Exercises 105</p> <p>References 106</p> <p><b>7 Quantum Error Correction 111<br /></b><i>Markus Grassl</i></p> <p>7.1 Introduction 111</p> <p>7.2 Quantum Channels 111</p> <p>7.3 Using Classical Error-Correcting Codes 115</p> <p>7.4 Further Aspects 124</p> <p>References 124</p> <p><b>Part III Theory of Entanglement 127</b></p> <p><b>8 The Separability versus Entanglement Problem 129<br /></b><i>Sreetama Das, Titas Chanda,Maciej Lewenstein, Anna Sanpera, Aditi Sen De, and Ujjwal Sen</i></p> <p>8.1 Introduction 129</p> <p>8.2 Bipartite Pure States: Schmidt Decomposition 130</p> <p>8.3 Bipartite Mixed States: Separable and Entangled States 131</p> <p>8.4 Operational Entanglement Criteria 132</p> <p>8.5 Non-operational Entanglement Criteria 141</p> <p>8.5.1 Technical Preface 141</p> <p>8.6 Bell Inequalities 149</p> <p>8.7 Quantification of Entanglement 152</p> <p>8.8 Classification of Bipartite States with Respect to Quantum Dense Coding 158</p> <p>8.9 Multipartite States 162</p> <p>Exercises 167</p> <p>Acknowledgments 168</p> <p>References 169</p> <p><b>9 Quantum Discord and Nonclassical Correlations Beyond Entanglement 175<br /></b><i>Gerardo Adesso, Marco Cianciaruso, and Thomas R. Bromley</i></p> <p>9.1 Introduction 175</p> <p>9.2 Quantumness Versus Classicality (of Correlations) 176</p> <p>9.3 Quantifying Quantum Correlations – Quantum Discord 180</p> <p>9.4 Interpreting Quantum Correlations – Local Broadcasting 184</p> <p>9.5 Alternative Characterizations of Quantum Correlations 186</p> <p>9.6 General Desiderata for Measures of Quantum Correlations 190</p> <p>9.7 Outlook 191</p> <p>Exercises 191</p> <p>References 192</p> <p><b>10 Entanglement Theory with Continuous Variables 195<br /></b><i>Peter van Loock and Evgeny Shchukin</i></p> <p>10.1 Introduction 195</p> <p>10.2 Phase-Space Description 197</p> <p>10.3 Entanglement of Gaussian States 197</p> <p>10.4 More on Gaussian Entanglement 209</p> <p>Exercises 211</p> <p>References 212</p> <p><b>11 Entanglement Measures 215<br /></b><i>Martin B. Plenio and Shashank S. Virmani</i></p> <p>11.1 Introduction 215</p> <p>11.2 Manipulation of Single Systems 217</p> <p>11.3 Manipulation in the Asymptotic Limit 218</p> <p>11.4 Postulates for Axiomatic Entanglement Measures: Uniqueness and Extremality Theorems 221</p> <p>11.5 Examples of Axiomatic Entanglement Measures 224</p> <p>Acknowledgments 228</p> <p>References 228</p> <p><b>12 Purification and Distillation 231<br /></b><i>Wolfgang Dür and Hans-J. Briegel</i></p> <p>12.1 Introduction 231</p> <p>12.2 Pure States 233</p> <p>12.3 Distillability and Bound Entanglement in Bipartite Systems 235</p> <p>12.4 Bipartite Entanglement Distillation Protocols 239</p> <p>12.5 Distillability and Bound Entanglement in Multipartite Systems 247</p> <p>12.6 Entanglement Purification Protocols in Multipartite Systems 248</p> <p>12.7 Distillability with Noisy Apparatus 252</p> <p>12.8 Applications of Entanglement Purification 257</p> <p>12.9 Summary and Conclusions 260</p> <p>Acknowledgments 261</p> <p>References 261</p> <p><b>13 Bound Entanglement 265<br /></b><i>Paweł Horodecki</i></p> <p>13.1 Introduction 265</p> <p>13.2 Distillation of Quantum Entanglement: Repetition 265</p> <p>13.3 Bound Entanglement – Bipartite Case 269</p> <p>13.4 Bound Entanglement: Multipartite Case 282</p> <p>13.5 Further Reading: Continuous Variables 287</p> <p>Exercises 287</p> <p>References 288</p> <p><b>14 Multipartite Entanglement 293<br /></b><i>Michael Walter, David Gross, and Jens Eisert</i></p> <p>14.1 Introduction 293</p> <p>14.2 General Theory 294</p> <p>14.3 Important Classes of Multipartite states 310</p> <p>14.4 Specialized Topics 316</p> <p>Acknowledgments 321</p> <p>References 321</p> <p><b>Part IV Quantum Communication 331</b></p> <p><b>15 Quantum Teleportation 333<br /></b><i>Natalia Korolkova</i></p> <p>15.1 Introduction 333</p> <p>15.2 Quantum Teleportation Protocol 334</p> <p>15.3 Implementations 340</p> <p>References 349</p> <p><b>16 Theory of Quantum Key Distribution (QKD) 353<br /></b><i>Norbert Lütkenhaus</i></p> <p>16.1 Introduction 353</p> <p>16.2 Classical Background to QKD 353</p> <p>16.3 Ideal QKD 354</p> <p>16.4 Idealized QKD in Noisy Environment 357</p> <p>16.5 Realistic QKD in Noisy and Lossy Environment 360</p> <p>16.6 Improved Schemes 363</p> <p>16.7 Improvements in Public Discussion 364</p> <p>16.8 Conclusion 365</p> <p>References 365</p> <p><b>17 Quantum Communication Experiments with Discrete Variables 369<br /></b><i>Harald Weinfurter</i></p> <p>17.1 Aunt Martha 369</p> <p>17.2 Quantum Cryptography 369</p> <p>17.3 Entanglement-Based Quantum Communication 375</p> <p>17.4 Conclusion 379</p> <p>References 379</p> <p><b>18 Continuous Variable Quantum Communication with Gaussian States 383<br /></b><i>Ulrik L. Andersen and Gerd Leuchs</i></p> <p>18.1 Introduction 383</p> <p>18.2 Continuous-Variable Quantum Systems 384</p> <p>18.3 Tools for State Manipulation 386</p> <p>18.4 Quantum Communication Protocols 391</p> <p>Exercises 397</p> <p>References 397</p> <p><b>Part V Quantum Computing: Concepts 401</b></p> <p><b>19 Requirements for a Quantum Computer 403<br /></b><i>Artur Ekert and Alastair Kay</i></p> <p>19.1 Classical World of Bits and Probabilities 403</p> <p>19.2 Logically Impossible Operations? 408</p> <p>19.3 Quantum World of Probability Amplitudes 410</p> <p>19.4 Interference Revisited 414</p> <p>19.5 Tools of the Trade 416</p> <p>19.6 Composite Systems 422</p> <p>19.7 Quantum Circuits 428</p> <p>19.8 Summary 433</p> <p>Exercises 433</p> <p><b>20 Probabilistic Quantum Computation and Linear Optical Realizations 437<br /></b><i>Norbert Lütkenhaus</i></p> <p>20.1 Introduction 437</p> <p>20.2 Gottesman/Chuang Trick 438</p> <p>20.3 Optical Background 439</p> <p>20.4 Knill–Laflamme–Milburn (KLM) Scheme 441</p> <p>References 446</p> <p><b>21 One-Way Quantum Computation 449<br /></b><i>Dan Browne and Hans Briegel</i></p> <p>21.1 Introduction 449</p> <p>21.2 Simple Examples 451</p> <p>21.3 Beyond Quantum Circuit Simulation 455</p> <p>21.4 Implementations 465</p> <p>21.5 Recent Developments 466</p> <p>21.6 Outlook 469</p> <p>Acknowledgments 469</p> <p>Exercises 469</p> <p>References 470</p> <p><b>22 Holonomic Quantum Computation 475<br /></b><i>Angelo C. M. Carollo and Vlatko Vedral</i></p> <p>22.1 Geometric Phase and Holonomy 475</p> <p>22.2 Application to Quantum Computation 479</p> <p>References 480</p> <p><b>Part VI Quantum Computing: Implementations 483</b></p> <p><b>23 Quantum Computing with Cold Ions and Atoms: Theory 485<br /></b><i>Dieter Jaksch, Juan José García-Ripoll, Juan Ignacio Cirac, and Peter Zoller</i></p> <p>23.1 Introduction 485</p> <p>23.2 Trapped Ions 485</p> <p>23.3 Trapped Neutral Atoms 495</p> <p>References 515</p> <p><b>24 Quantum Computing Experiments with Cold Trapped Ions 519<br /></b><i>Ferdinand Schmidt-Kaler and Ulrich Poschinger</i></p> <p>24.1 Introduction to Trapped-Ion Quantum Computing 519</p> <p>24.2 Paul Traps 522</p> <p>24.3 Ion Crystals and Normal Modes 526</p> <p>24.4 Trap Technology 529</p> <p>Acknowledgements 547</p> <p>References 547</p> <p><b>25 Quantum Computing with Solid-State Systems 553<br /></b><i>Guido Burkard and Daniel Loss</i></p> <p>25.1 Introduction 553</p> <p>25.2 Concepts 554</p> <p>25.3 Electron Spin Qubits 563</p> <p>25.4 Superconducting Qubits 575</p> <p>References 583</p> <p><b>26 Time-Multiplexed Networks for Quantum Optics 587<br /></b><i>Sonja Barkhofen, Linda Sansoni and Christine Silberhorn</i></p> <p>26.1 Introduction 587</p> <p>26.2 Multiplexing 588</p> <p>26.3 Photon-Number-Resolving Detection with Time Multiplexing 589</p> <p>26.4 Quantum Walks in Time 592</p> <p>26.5 Conclusion 600</p> <p>References 601</p> <p><b>27 A Brief on Quantum Systems Theory and Control Engineering 607<br /></b><i>Thomas Schulte-Herbrüggen, Robert Zeier,Michael Keyl, and Gunther Dirr</i></p> <p>27.1 Introduction 607</p> <p>27.2 Systems Theory of Closed Quantum Systems 609</p> <p>27.3 Toward a Systems Theory for Open Quantum Systems 620</p> <p>27.4 Relation to Numerical Optimal Control 624</p> <p>27.5 Outlook on Infinite-Dimensional Systems 626</p> <p>27.6 Conclusion 633</p> <p>Acknowledgments 633</p> <p>Exercises 634</p> <p>References 635</p> <p><b>28 Quantum Computing Implemented via Optimal Control: Application to Spin and Pseudospin</b> <b>Systems 643<br /></b><i>Thomas Schulte-Herbrüggen, Andreas Spörl, Raimund Marx, Navin Khaneja, JohnMyers, Amr Fahmy,</i> <i>Samuel Lomonaco, Louis Kauffman, and Steffen Glaser</i></p> <p>28.1 Introduction 643</p> <p>28.2 From Controllable Spin Systems to Suitable Molecules 645</p> <p>28.3 Scalability 647</p> <p>28.4 Algorithmic Platform for Quantum Control Systems 649</p> <p>28.5 Applied Quantum Control 651</p> <p>28.6 Worked Example: Unitary Controls for Classifying Knots by NMR 656</p> <p>28.7 Conclusions 661</p> <p>Acknowledgments 662</p> <p>Exercises 662</p> <p>References 663</p> <p><b>Part VII Quantum Interfaces and Memories 669</b></p> <p><b>29 Cavity Quantum Electrodynamics: Quantum Information Processing with Atoms and Photons 671<br /></b><i>Jean-Michel Raimond and Gerhard Rempe</i></p> <p>29.1 Introduction 671</p> <p>29.2 Microwave Cavity Quantum Electrodynamics 672</p> <p>29.3 Optical Cavity Quantum Electrodynamics 677</p> <p>29.4 Conclusions and Outlook 683</p> <p>References 684</p> <p><b>30 Quantum Repeater 691<br /></b><i>Wolfgang Dür, Hans-J. Briegel, Peter Zoller, and Peter v Loock</i></p> <p>30.1 Introduction 691</p> <p>30.2 Concept of the Quantum Repeater 693</p> <p>30.3 Proposals for Experimental Realization 697</p> <p>30.4 Summary and Conclusions 699</p> <p>Acknowledgments 699</p> <p>References 699</p> <p><b>31 Quantum Interface Between Light and Atomic Ensembles 701<br /></b><i>Eugene S. Polzik and Jaromír Fiurášek</i></p> <p>31.1 Introduction 701</p> <p>31.2 Off-Resonant Interaction of Light with Atomic Ensemble 702</p> <p>31.3 Entanglement of Two Atomic Clouds 711</p> <p>31.4 Quantum Memory for Light 712</p> <p>31.5 Multiple Passage Protocols 715</p> <p>31.6 Atoms-Light Teleportation and Entanglement Swapping 718</p> <p>31.7 Quantum Cloning into Atomic Memory 720</p> <p>31.8 Summary 721</p> <p>Acknowledgment 721</p> <p>References 721</p> <p><b>32 Echo-Based Quantum Memory 723<br /></b><i>G. T. Campbell, K. R. Ferguson, M. J. Sellars, B. C. Buchler, and P. K. Lam</i></p> <p>32.1 Overview of Photon Echo Techniques 724</p> <p>32.2 Platforms for Echo-Based Quantum Memory 728</p> <p>32.3 Characterization 731</p> <p>32.4 Demonstrations 734</p> <p>32.5 Outlook 736</p> <p>References 737</p> <p><b>33 Quantum Electrodynamics of a Qubit 741<br /></b><i>Gernot Alber and Georgios M. Nikolopoulos</i></p> <p>33.1 Quantum Electrodynamics of a Qubit in a Spherical Cavity 742</p> <p>33.2 Suppression of Radiative Decay of a Qubit in a Photonic Crystal 750</p> <p>Exercises 755</p> <p>References 756</p> <p><b>34 Elementary Multiphoton Processes in Multimode Scenarios 759<br /></b><i>Nils Trautmann and Gernot Alber</i></p> <p>34.1 A Generic Quantum Electrodynamical Model 761</p> <p>34.2 The Multiphoton Path Representation 761</p> <p>34.3 Examples 767</p> <p>34.4 Conclusion 772</p> <p>Appendix A: Evaluation of the Field Commutator 773</p> <p>References 774</p> <p><b>Part VIII Towards Quantum Technology Applications 777</b></p> <p><b>35 Quantum Interferometry with Gaussian States 779<br /></b><i>Ulrik L. Andersen, Oliver Glöckl, Tobias Gehring, and Gerd Leuchs</i></p> <p>35.1 Introduction 779</p> <p>35.2 The Interferometer 780</p> <p>35.3 Interferometer with Coherent States of Light 783</p> <p>35.4 Interferometer with Squeezed States of Light 786</p> <p>35.5 Fundamental Limits 792</p> <p>35.6 Summary and Discussion 793</p> <p>Problems 795</p> <p>References 796</p> <p><b>36 Quantum Logic-Enabled Spectroscopy 799<br /></b><i>Piet O. Schmidt</i></p> <p>36.1 Introduction 799</p> <p>36.2 Trapping and Doppler Cooling of a Two-Ion Crystal 800</p> <p>36.3 Coherent Atom–Light Interaction and State Manipulation 802</p> <p>36.4 Quantum Logic Spectroscopy for Optical Clocks 805</p> <p>36.5 Photon Recoil Spectroscopy 809</p> <p>36.6 Quantum Logic with Molecular Ions 815</p> <p>36.7 Nonclassical States for Spectroscopy 819</p> <p>36.8 Future Directions 821</p> <p>Acknowledgments 822</p> <p>References 822</p> <p><b>37 Quantum Imaging 827<br /></b><i>Claude Fabre and Nicolas Treps</i></p> <p>37.1 Introduction 827</p> <p>37.2 The Quantum Laser Pointer 828</p> <p>37.3 Manipulation of Spatial Quantum Noise 830</p> <p>37.4 Two-Photon Imaging 832</p> <p>37.5 Other Topics in Quantum Imaging 833</p> <p>37.6 Conclusion and Perspectives 834</p> <p>Acknowledgment 835</p> <p>References 835</p> <p><b>38 Quantum Frequency Combs 837<br /></b><i>Claude Fabre and Nicolas Treps</i></p> <p>38.1 Introduction 837</p> <p>38.2 Parametric Down Conversion of a Frequency Comb 839</p> <p>38.3 Experiment 840</p> <p>38.4 Experimental Results 843</p> <p>38.5 Application to Quantum Information Processing 849</p> <p>38.6 Application to Quantum Metrology 853</p> <p>38.7 Conclusion 854</p> <p>Acknowledgment 855</p> <p>References 855</p> <p>Index 859</p>
Dagmar Bru? graduated at RWTH University Aachen, Germany, and received her PhD in theoretical particle physics from the University of Heidelberg in 1994. As a research fellow at the University of Oxford she became interested in quantum information. Another European fellowship at ISI Torino, Italy, followed. While being a research assistant at the University of Hannover she completed her habilitation. Since 2004 Professor Bru? has been holding a chair at the Institute of Theoretical Physics at Heinrich-Heine-University Dusseldorf, Germany. Her research pertains to theoretical aspects of quantum information processing.<br> <br> Gerd Leuchs studied physics and mathematics at the University of Cologne, Germany, and received his Ph.D. in 1978. After two years at the University of Colorado in Boulder, USA, he headed the German gravitational wave detection group from 1985 to 1989. He became technical director at Nanomach AG in Switzerland. Since 1994 Professor Leuchs has been holding the chair for optics at the University of Erlangen-Nuremberg, Germany. In 2009 he was a founding director of the Max Planck Institute for the Science of Light. He is visiting professor at the University of Ottawa. His fields of research span the range from modern aspects of classical optics to quantum optics and quantum information.<br>
<p>This comprehensive textbook on the rapidly advancing field introduces readers to the fundamental concepts of information theory and quantum entanglement, taking into account the current state of research and development. It thus covers all current concepts in quantum computing, both theoretical and experimental, before moving on to the latest implementations of quantum computing and communication protocols. It contains problems and exercises and is therefore ideally suited for students and lecturers in physics and informatics, as well as experimental and theoretical physicists in academia and industry who work in the field of quantum information processing.<br /> <br /> The second edition incorporates important recent developments such as quantum metrology, quantum correlations beyond entanglement, and advances in quantum computing with solid state devices.</p>

Diese Produkte könnten Sie auch interessieren:

Quantum Mechanics
Quantum Mechanics
von: Nouredine Zettili
PDF ebook
51,99 €
Cavity Quantum Electrodynamics
Cavity Quantum Electrodynamics
von: Sergio M. Dutra
PDF ebook
144,99 €