Details

Polymer Electrolytes


Polymer Electrolytes

Characterization Techniques and Energy Applications
1. Aufl.

von: Tan Winie, Abdul K. Arof, Sabu Thomas

144,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 05.11.2019
ISBN/EAN: 9783527805433
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices <br> <br> Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. <br> <br> Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: <br> <br> -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry <br> -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications <br> -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes <br> <br> Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices. <br>
<p>Preface xiii</p> <p><b>1 Polymer Electrolytes: State of the Art </b><b>1<br /></b><i>Masashi Kotobuki</i></p> <p>1.1 Introduction 1</p> <p>1.2 Solid Polymer Electrolyte 4</p> <p>1.3 Gel Polymer Electrolyte 8</p> <p>1.4 Composite Polymer Electrolyte 12</p> <p>1.5 Summary 17</p> <p>References 17</p> <p><b>2 Impedance Spectroscopy in Polymer Electrolyte Characterization </b><b>23<br /></b><i>Mohamed Abdul Careem, Ikhwan Syafiq Mohd Noor, and Abdul K. Arof</i></p> <p>2.1 Introduction 23</p> <p>2.2 IS: Principal Operation and Experimental Setup 23</p> <p>2.2.1 Basic Principles of Impedance Spectroscopy 23</p> <p>2.2.2 Impedance Spectroscopy (IS) Technique 25</p> <p>2.2.3 Electrical Conductivity of a Sample 26</p> <p>2.2.4 Conditions Necessary for IS Measurements 26</p> <p>2.2.5 Impedance Plots of Simple Circuits 28</p> <p>2.2.5.1 A Pure Resistance, <i>R</i> 28</p> <p>2.2.5.2 A Pure Capacitance, <i>C</i> 28</p> <p>2.2.5.3 <i>R </i>and <i>C </i>Connected in Series 29</p> <p>2.2.5.4 <i>R </i>and <i>C </i>Connected in Parallel 30</p> <p>2.2.5.5 Combined Series and Parallel Circuits 31</p> <p>2.2.5.6 Impedance Spectra of Model Electrolyte Systems 32</p> <p>2.2.6 Possible Conduction Processes in a Solid Electrolyte 35</p> <p>2.2.7 Impedance Spectra of Real Systems 36</p> <p>2.2.7.1 The Constant Phase Element (CPE) 37</p> <p>2.2.7.2 Equivalent Circuits for Real Systems 37</p> <p>2.2.7.3 Electrolyte/Electrode (E/E) Interface 39</p> <p>2.2.7.4 Diffusion Impedance or Mass Transport Impedance 39</p> <p>2.2.7.5 Warburg Impedance 40</p> <p>2.2.7.6 Equivalent Circuit Representation of an E/E System 41</p> <p>2.2.8 Impedance-Related Functions 42</p> <p>2.2.8.1 Immittance Functions 43</p> <p>2.2.8.2 Relationships Between Immittance Functions 43</p> <p>2.2.8.3 Immittance Plots 43</p> <p>2.2.8.4 Choice Between Immittance Functions 46</p> <p>2.2.9 Experimental Setup 46</p> <p>2.2.9.1 Sample and Cell Arrangement 47</p> <p>2.2.9.2 Other Practical Details and Precautions 48</p> <p>2.3 IS: Experimental Data Interpretation and Analysis 49</p> <p>2.3.1 Determination of Bulk Resistance from the Impedance Plots 49</p> <p>2.3.2 Impedance Data Interpretation and Analysis 50</p> <p>2.3.2.1 Interpretation of Impedance Data 51</p> <p>2.3.2.2 Choice of Equivalent Circuits 51</p> <p>2.3.3 Determination of Transport Parameters from Impedance Data 53</p> <p>2.3.3.1 Bandara–Mellander (B–M) Method 53</p> <p>2.3.3.2 Nyquist Plot Fitting Method 57</p> <p>2.3.4 Some Experimental Results and Analysis 59</p> <p>2.3.4.1 Conductivity Calculation of Impedance Plots 59</p> <p>2.3.4.2 Conductivity Determination from Fitting Equivalent Circuit 60</p> <p>2.3.4.3 Evaluation of Transport Properties using Nyquist Plot Fitting Method 60</p> <p>2.4 Conclusions 63</p> <p>References 64</p> <p><b>3 Thermal Characterization of Polymer Electrolytes </b><b>65<br /></b><i>Aparna Thankappan, Manuel Stephan, and Sabu Thomas</i></p> <p>3.1 Introduction 65</p> <p>3.2 TGA: Experimental Data Interpretation and Analysis 67</p> <p>3.3 DSC: Experimental Data Interpretation and Analysis 75</p> <p>3.4 DSC: Experimental Errors and Suggestion for Improvement 82</p> <p>3.4.1 Transition(s) at 0<sup>∘</sup>C 83</p> <p>3.4.2 Apparent Melting at <i>T</i><sub>g</sub> 83</p> <p>3.4.3 Exothermic Peaks Below Decomposition Temperature While Heating 84</p> <p>3.4.4 Baseline Shift after Endothermic or Exothermic Peaks 86</p> <p>3.4.5 Sharp Endothermic Peaks During Exothermic Reactions 86</p> <p>3.5 DMA: Experimental Data Interpretation and Analysis 87</p> <p>References 91</p> <p><b>4 Energy in a Portable World </b><b>93<br /></b><i>Noor Syuhada Zakuan, Woo Haw Jiunn, and Tan Winie</i></p> <p>4.1 Introduction 93</p> <p>4.2 History Development of Mobile Power 94</p> <p>4.3 Caring for Mobile Power from Birth to Retirement 102</p> <p>4.3.1 Getting the Most Out of the Primary Batteries 103</p> <p>4.3.2 Getting the Most Out of the Lead-Acid Batteries 103</p> <p>4.3.3 Getting the Most Out of the Nickel-Based Batteries 104</p> <p>4.3.4 Getting the Most Out of the Lithium Ion Batteries 105</p> <p>4.4 Mobile Power Recycling 106</p> <p>4.4.1 Recycling Primary Batteries 106</p> <p>4.4.2 Recycling Rechargeable Batteries 109</p> <p>Acknowledgments 111</p> <p>References 111</p> <p><b>5 Insight on Polymer Electrolytes for Electrochemical Devices Applications </b><b>113<br /></b><i>Maria Manuela Silva, Verónica de Zea Bermudez, and Agnieszka Pawlicka</i></p> <p>5.1 Introduction 113</p> <p>5.2 Theory: Ionic Conductivity 117</p> <p>5.3 Applications 120</p> <p>5.3.1 Conventional Batteries and Transient Batteries 120</p> <p>5.3.2 Fuel Cells 123</p> <p>5.3.3 Supercapacitors 124</p> <p>5.3.4 Electrochromic Devices 125</p> <p>5.3.5 Dye-Sensitized Solar Cells 127</p> <p>5.3.6 Sensors 128</p> <p>5.3.7 Light-Emitting Electrochemical Cells 128</p> <p>References 129</p> <p><b>6 Polymer Electrolyte Application in Electrochemical Devices </b><b>137<br /></b><i>Siti Nor Farhana Yusuf and Abdul K. Arof</i></p> <p>6.1 Introduction 137</p> <p>6.2 Properties of Polymer Electrolytes (PEs) 137</p> <p>6.3 Review of Polymer Electrolytes 138</p> <p>6.3.1 Dry Solid Polymer Electrolytes (SPEs) 138</p> <p>6.3.2 Gel Polymer Electrolytes (GPEs) 141</p> <p>6.3.2.1 Ionic Liquid Gel Polymer Electrolytes (ILGPEs) 144</p> <p>6.3.2.2 Gel Polymer Electrolytes with Nanomaterials 146</p> <p>6.4 Application of PEs in Electrochemical Devices 148</p> <p>6.4.1 Dye-Sensitized Solar Cells (DSSCs) 148</p> <p>6.4.2 Lithium Ion Batteries 150</p> <p>6.4.3 Electrical Double Layer Capacitors (EDLCs) 152</p> <p>6.4.4 Polymer Electrolyte Fuel Cells 156</p> <p>6.4.5 Electrochromic Windows 163</p> <p>6.4.6 Electrochromic Materials 164</p> <p>6.4.6.1 Transition Metal Oxides 164</p> <p>6.5 Challenges and Improvements 167</p> <p>6.5.1 In Electrolytes 167</p> <p>6.5.2 In Devices 169</p> <p>6.5.2.1 DSSCs 169</p> <p>6.5.2.2 Fuel Cell 170</p> <p>6.5.2.3 Batteries 171</p> <p>6.5.2.4 EDLCs 172</p> <p>6.5.2.5 Electrochromic Windows (ECWs) 172</p> <p>6.6 Future Aspects 173</p> <p>6.6.1 Electrochromic Windows 173</p> <p>6.6.2 Batteries 173</p> <p>6.6.3 DSSCs 173</p> <p>6.6.4 Fuel Cells 174</p> <p>References 175</p> <p><b>7 Polymer Electrolytes for Lithium Ion Batteries and Challenges: Part I </b><b>187<br /></b><i>Shishuo Liang, Wenqi Yan, Minxia Li, Yusong Zhu, Lijun Fu, and Yuping Wu</i></p> <p>7.1 Introduction 187</p> <p>7.2 Classification of Polymer Electrolytes 188</p> <p>7.2.1 Solid Polymer Electrolytes (SPEs) 188</p> <p>7.2.2 Gel Polymer Electrolytes (GPEs) 190</p> <p>7.3 Performance and Improvements 190</p> <p>7.4 Application and Performance of Polymer Lithium Ion Batteries 194</p> <p>7.5 Future Trends 195</p> <p>Acknowledgments 196</p> <p>References 197</p> <p><b>8 Polymer Electrolytes for Lithium Ion Batteries and Challenges: Part II </b><b>201<br /></b><i>Siti Nor Farhana Yusuf and Abdul K. Arof</i></p> <p>8.1 Introduction 201</p> <p>8.2 Structure and Operation of Lithium Ion Batteries 202</p> <p>8.2.1 Anode Materials 204</p> <p>8.2.2 Cathode Materials 205</p> <p>8.2.3 Electrolytes 206</p> <p>8.2.4 Li<sup>+</sup> Ion Transport in Polymer Electrolytes 206</p> <p>8.3 Polymer Electrolyte for Lithium Ion Batteries 207</p> <p>8.4 Performance Characteristics of Lithium Ion Batteries 216</p> <p>8.5 Challenges and Improvement 218</p> <p>8.6 Future Trends 219</p> <p>References 221</p> <p><b>9 Polymer Electrolytes for Supercapacitor and Challenges </b><b>231<br /></b><i>Safir Ahmad Hashmi, Nitish Yadav, and Manoj Kumar Singh</i></p> <p>9.1 Introduction 231</p> <p>9.2 Principle and Working Process of Supercapacitors 232</p> <p>9.2.1 Charge Storage Mechanisms in EDLCs 233</p> <p>9.2.2 Charge Storage Mechanisms in Pseudocapacitors 236</p> <p>9.2.2.1 Underpotential Deposition 237</p> <p>9.2.2.2 Redox Pseudocapacitance 237</p> <p>9.2.2.3 Intercalation Pseudocapacitance 238</p> <p>9.3 Electrolytes for Supercapacitors 239</p> <p>9.3.1 Liquid Electrolytes 239</p> <p>9.3.2 Polymer-Based Electrolytes 241</p> <p>9.3.2.1 Solvent-Free Solid Polymer Electrolytes (SPEs) 242</p> <p>9.3.2.2 Gel Polymer Electrolytes (GPEs) 242</p> <p>9.3.2.3 Porous Polymer Electrolytes 252</p> <p>9.4 Performance Characteristics 255</p> <p>9.4.1 Electrode Characterization 255</p> <p>9.4.2 Characterization of Supercapacitors 258</p> <p>9.4.2.1 Electrochemical Characterization Techniques and Important Parameters 258</p> <p>9.4.2.2 Performance of Polymer Electrolyte-Based Supercapacitors: Some Case Studies 262</p> <p>9.5 Challenges to Solid-State Supercapacitors and Future Scope of Improvement 284</p> <p>References 285</p> <p><b>10 Polymer Electrolytes for Quantum Dot-Sensitized Solar Cells (QDSSCs) and Challenges </b><b>299<br /></b><i>T.M.W.J. Bandara and J.L. Ratnasekera</i></p> <p>10.1 Demand and Supply of Energy 299</p> <p>10.2 The Sun as a Potential Energy Resource 300</p> <p>10.3 Advantages of Solar Cells 301</p> <p>10.4 Photo-Electrochemical Solar Cells 301</p> <p>10.4.1 General Mechanism of a Photo-Electrochemical Solar Cell 303</p> <p>10.4.2 Mechanism of a Photo-Electrochemical Solar Cell 304</p> <p>10.4.3 Semiconductor/Polymer Electrolyte Junction 308</p> <p>10.4.4 Photo-sensitization of Wide Bandgap Semiconductors 308</p> <p>10.5 Quantum Dot-Sensitized Solar Cells (QDSSCs) 310</p> <p>10.5.1 Quantum Dots 310</p> <p>10.5.2 Mechanism of a QDSSC 313</p> <p>10.5.3 Quantum Dot-Sensitized Solar Cells (QDSSCs) 314</p> <p>10.5.4 Polymer Electrolytes for QDSSCs 317</p> <p>10.6 Performances of Different QDSSCs Assemblies Based on Polymer Electrolytes 318</p> <p>10.6.1 Quasi-Solid-State QDSSCs Based on Polyacrylamide Hydrogel Electrolytes 318</p> <p>10.6.1.1 Hydrogel Electrolyte with Polyacrylamide 318</p> <p>10.6.2 CdS-Sensitized Cell with PAN and PVDF Electrolytes 319</p> <p>10.6.3 ZnO-Based Quasi-Solid QDSSCs Sensitized with CdS and CdSe 323</p> <p>10.6.3.1 Quasi-Solid-State Electrolyte Preparation 324</p> <p>10.6.4 Natural Polysaccharide Thin Film-Based Electrolyte for Quasi-Solid State QDSSCs 324</p> <p>10.6.5 Dextran-Based Hydrogel Polysulfide Electrolyte for Quasi-Solid-State QDSSCs 325</p> <p>10.6.6 Carbon Dots Enhance Light Harvesting in a Solid-State QDSSC 326</p> <p>10.6.7 Quantum Dot-Sensitized Solar Cells Based on Oligomer Gel Electrolytes 326</p> <p>10.6.8 QDSSCs with Thiolate/Disulfide Redox Couple and Succinonitrile-Based Electrolyte 327</p> <p>10.6.9 Graphene-Implanted Polyacrylamide Gel Electrolytes for QDSSCs 328</p> <p>10.6.10 PEO and PVDF-Based Electrolyte for Solid-State Electrolytes for QDSSCs 329</p> <p>10.6.11 Hydroxystearic Acid-Based Polysulfide Hydrogel Electrolyte for CdS/CdSe QDSSCs 329</p> <p>10.6.12 QDSSCs Based on a Sodium Polyacrylate Polyelectrolyte 330</p> <p>10.7 Summary 331</p> <p>References 334</p> <p><b>11 Polymer Electrolytes for Perovskite Solar Cell and Challenges </b><b>339<br /></b><i>Rahul Singh, Hee-Woo Rhee, Bhaskar Bhattacharya, and Pramod K. Singh</i></p> <p>11.1 Introduction 339</p> <p>11.2 Principle and Working Process of Perovskite Solar Cell 341</p> <p>11.2.1 Perovskite Materials 342</p> <p>11.2.2 Perovskite Structure 344</p> <p>11.2.3 Synthesis of Perovskite 349</p> <p>11.2.3.1 Solution-Processed Method 349</p> <p>11.2.3.2 Hot Casting Technique 352</p> <p>11.2.3.3 Vapor Deposition Method 352</p> <p>11.2.3.4 Thermal Evaporation Technique 352</p> <p>11.3 Polymer Electrolyte for Perovskite Solar Cell 354</p> <p>11.3.1 Device Fabrication 354</p> <p>11.3.2 Hole Transport Layer 355</p> <p>11.4 Performance Characteristics 355</p> <p>11.5 Challenges and Improvement 356</p> <p>11.6 Future Trends 357</p> <p>11.7 Conclusion 358</p> <p>Competing Interests 358</p> <p>Acknowledgments 358</p> <p>References 358</p> <p><b>12 Polymer Electrolytes for Electrochromic Windows </b><b>365<br /></b><i>Li Na Sim and Agnieszka Pawlicka</i></p> <p>12.1 Introduction 365</p> <p>12.2 Principles and Working Process of Electrochromic Window 366</p> <p>12.3 Types of Electrochromic Electrodes 367</p> <p>12.4 Mechanism of ECW 368</p> <p>12.5 Polymer Electrolytes for Electrochromic Windows 369</p> <p>12.5.1 Background 369</p> <p>12.5.2 Criteria of Polymer Electrolytes and Electrochromic Device 369</p> <p>12.5.3 Types of Polymer Electrolytes Used in ECWs 370</p> <p>12.5.3.1 Solid Polymer Electrolytes (SPEs) 370</p> <p>12.5.3.2 Gel Polymer Electrolytes (GPEs) 374</p> <p>12.5.3.3 Composite Polymer Electrolyte 383</p> <p>12.6 Present ECDs Uses/Applications 385</p> <p>References 385</p> <p>Index 391</p>
<p><b><i>Tan Winie</i></b><i> is Associate Professor in the School of Physics and Material Science at Universiti Teknologi MARA, Malaysia. She is an Associate Fellow of the Malaysian Scientific Association.</i> <p><b><i>Abdul Kariem Arof</i></b><i> is a retired Professor in the Department of Physics at University of Malaya, Malaysia.</i> <p><b><i>Sabu Thomas</i></b> <i>is Professor, School of Chemical Sciences and Vice Chancellor, Mahatma Gandhi University, India.</i>
<p><b>A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices</b> <p><i>Polymer Electrolytes</i> is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The editors and contributors – noted experts on the topic – discuss the various characterization methods, including impedance spectroscopy and thermal characterization. They also provide information on the applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. <p>Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: <ul> <li>Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry</li> <li>Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications</li> <li>Contains detailed and comprehensive information on characterization and applications of polymer electrolytes</li> </ul> <p>Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, <i>Polymer Electrolytes</i> is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €