Details

Electrocatalysts for Low Temperature Fuel Cells


Electrocatalysts for Low Temperature Fuel Cells

Fundamentals and Recent Trends
1. Aufl.

von: Thandavarayan Maiyalagan, Viswanathan S. Saji

187,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 04.05.2017
ISBN/EAN: 9783527803866
Sprache: englisch
Anzahl Seiten: 616

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts.<br> A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.
<p>List of Contributors xvii</p> <p>Preface xxiii</p> <p><b>1 Principle of Low-temperature Fuel Cells Using an Ionic Membrane 1</b><br /><i>Claude Lamy</i></p> <p>1.1 Introduction 1</p> <p>1.2 Thermodynamic Data and Theoretical Energy Efficiency under Equilibrium (j= 0) 2</p> <p>1.3 Electrocatalysis and the Rate of Electrochemical Reactions 8</p> <p>1.4 Influence of the Properties of the PEMFC Components (Electrode Catalyst Structure, Membrane Resistance, and Mass Transfer Limitations) on the Polarization Curves 16</p> <p>1.5 Representative Examples of Low-temperature Fuel Cells 19</p> <p>1.6 Conclusions and Outlook 30</p> <p>Acknowledgments 31</p> <p>References 31</p> <p><b>2 Research Advancements in Low-temperature Fuel Cells 35</b><br /><i>N. Rajalakshmi, R. Imran Jafri, and K.S. Dhathathreyan</i></p> <p>2.1 Introduction 35</p> <p>2.2 Proton Exchange Membrane Fuel Cells 38</p> <p>2.3 Alkaline Fuel Cells 50</p> <p>2.4 Direct Borohydride Fuel Cells 59</p> <p>2.5 Regenerative Fuel Cells 62</p> <p>2.6 Conclusions and Outlook 64</p> <p>Acknowledgments 65</p> <p>References 65</p> <p><b>3 Electrocatalytic Reactions Involved in Low-temperature Fuel Cells 75</b><br /><i>Claude Lamy</i></p> <p>3.1 Introduction 75</p> <p>3.2 Preparation and Characterization of Pt-based Plurimetallic Electrocatalysts 76</p> <p>3.3 Mechanisms of the Electrocatalytic Reactions Involved in Lowtemperature Fuel Cells 90</p> <p>3.4 Conclusions and Outlook 105</p> <p>Acknowledgment 106</p> <p>References 106</p> <p><b>4 Direct Hydrocarbon Low-temperature Fuel Cell 113</b><br /><i>Ayan Mukherjee and Suddhasatwa Basu</i></p> <p>4.1 Introduction 113</p> <p>4.2 Direct Methanol Fuel Cell 114</p> <p>4.3 Direct Ethanol Fuel Cell 119</p> <p>4.4 Direct Ethylene Glycol Fuel Cell 125</p> <p>4.5 Direct Formic Acid Fuel Cell 129</p> <p>4.6 Direct Glucose Fuel Cell 131</p> <p>4.7 Commercialization Status of DHFC 132</p> <p>4.8 Conclusions and Outlook 134</p> <p>References 137</p> <p><b>5 The Oscillatory Electrooxidation of Small Organic Molecules 145</b><br /><i>Hamilton Varela, Marcelo V.F. Delmonde, and Alana A. Zülke</i></p> <p>5.1 Introduction 145</p> <p>5.2 In Situ and Online Approaches 147</p> <p>5.3 The Effect of Temperature 152</p> <p>5.4 Modified Surfaces 155</p> <p>5.5 Conclusions and Outlook 157</p> <p>Acknowledgments 157</p> <p>References 158</p> <p><b>6 Degradation Mechanism of Membrane Fuel Cells with Monoplatinum and Multicomponent Cathode Catalysts 165</b><br /><i>Mikhail R. Tarasevich and Vera A. Bogdanovskaya</i></p> <p>6.1 Introduction 165</p> <p>6.2 Synthesis and Experimental Methods of Studying Catalytic Systems under Model Conditions 166</p> <p>6.3 Characteristics of Commercial and Synthesized Catalysts 169</p> <p>6.4 Methods of Testing Catalysts within FC MEAs 179</p> <p>6.5 Mechanism of Degradation Phenomenon in MEAs with Commercial Pt/C Catalysts 181</p> <p>6.6 Characteristics of MEAs with 40Pt/CNT-T-based Cathode 187</p> <p>6.7 Characteristics of MEAs with 50PtCoCr/C-based Cathodes 188</p> <p>6.8 Conclusions and Outlook 192</p> <p>Acknowledgments 193</p> <p>References 193</p> <p><b>7 Recent Developments in Electrocatalysts and Hybrid Electrocatalyst Support Systems for Polymer Electrolyte Fuel Cells 197</b><br /><i>Surbhi Sharma</i></p> <p>7.1 Introduction 197</p> <p>7.2 Current State of Pt and Non-Pt Electrocatalysts Support Systems for PEFC 197</p> <p>7.3 Novel Pt Electrocatalysts 199</p> <p>7.4 Pt-based Electrocatalysts on Novel Carbon Supports 203</p> <p>7.5 Pt-based Electrocatalysts on Novel Carbon-free Supports 207</p> <p>7.6 Pt-free Metal Electrocatalysts 213</p> <p>7.7 Influence of Support: Electrocatalyst–Support Interactions and Effect of Surface Functional Groups 214</p> <p>7.8 Hybrid Catalyst Support Systems 218</p> <p>7.9 Conclusions and Outlook 223</p> <p>References 224</p> <p><b>8 Role of Catalyst Supports: Graphene Based Novel Electrocatalysts 241</b><br /><i>Chunmei Zhang and Wei Chen</i></p> <p>8.1 Introduction 241</p> <p>8.2 Graphene-based Cathode Catalysts for Oxygen Reduction Reaction 243</p> <p>8.3 Graphene-based Anode Catalysts 250</p> <p>8.4 Conclusions and Outlook 256</p> <p>Acknowledgment 256</p> <p>References 257</p> <p><b>9 Recent Progress in Nonnoble Metal Electrocatalysts for Oxygen Reduction for Alkaline Fuel Cells 267</b><br /><i>Qinggang He and Xin Deng</i></p> <p>9.1 Introduction 267</p> <p>9.2 Nonnoble Metal Electrocatalysts 272</p> <p>9.3 Conclusions and Outlook 296</p> <p>References 299</p> <p><b>10 Anode Electrocatalysts for Direct Borohydride and Direct Ammonia Borane Fuel Cells 317</b><br /><i>Pierre-Yves Olu, Anicet Zadick, Nathalie Job, and Marian Chatenet</i></p> <p>10.1 Introduction 317</p> <p>10.2 Direct Borohydride (and Ammonia Borane) Fuel Cells 318</p> <p>10.2.1 Basics of DBFC and DABFC 318</p> <p>10.2.2 Main Issues of the DBFC and DABFC 319</p> <p>10.3 Mechanistic Investigations of BOR and BH3OR at Noble Electrocatalysts 320</p> <p>10.4 Toward Ideal Anode of DBFC and DABFC 329</p> <p>10.5 Durability of DBFC and DABFC Electrocatalysts 336</p> <p>10.6 Conclusions and Outlook 339</p> <p>References 340</p> <p><b>11 Recent Advances in Nanostructured Electrocatalysts for Lowtemperature Direct Alcohol Fuel Cells 347</b><br /><i>Srabanti Ghosh, Thandavarayan Maiyalagan, and Rajendra N. Basu</i></p> <p>11.1 Introduction 347</p> <p>11.2 Fundamentals of Electrooxidation of Organic Molecules for Fuel Cells 348</p> <p>11.3 Investigation of Electrocatalytic Properties of Nanomaterials 352</p> <p>11.4 Anode Electrocatalysts for Direct Methanol or Ethanol Fuel Cells 353</p> <p>11.5 Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol and Glycerol) 359</p> <p>11.6 Conclusions and Outlook 361</p> <p>References 362</p> <p><b>12 Electrocatalysis of Facet-controlled Noble Metal Nanomaterials for Low-temperature Fuel Cells 373</b><br /><i>Xiaojun Liu, Wenyue Li, and Shouzhong Zou</i></p> <p>12.1 Introduction 373</p> <p>12.2 Synthesis of Shape-controlled Noble Metal Nanomaterials 374</p> <p>12.3 Applications of Shape-controlled Noble Metal Nanomaterials as Catalysts for Low-temperature Fuel Cells 383</p> <p>12.4 Conclusions and Outlook 389</p> <p>Acknowledgment 390</p> <p>References 390</p> <p><b>13 Heteroatom-doped Nanostructured Carbon Materials as ORR Electrocatalysts for Low-temperature Fuel Cells 401</b><br /><i>Thandavarayan Maiyalagan, Subbiah Maheswari, and Viswanathan S. Saji</i></p> <p>13.1 Introduction 401</p> <p>13.2 Oxygen Reduction Reaction and Methanol-tolerant ORR Catalysts 402</p> <p>13.3 Heteroatom-doped Nanostructured Carbon Materials 403</p> <p>13.4 Heteroatom-doped Carbon-based Nanocomposites 415</p> <p>13.5 Conclusions and Outlook 416</p> <p>References 417</p> <p><b>14 Transition Metal Oxide, Oxynitride, and Nitride Electrocatalysts with and without Supports for Polymer Electrolyte Fuel Cell Cathodes 423</b><br /><i>Mitsuharu Chisaka</i></p> <p>14.1 Introduction 423</p> <p>14.2 Transition Metal Oxide and Oxynitride Electrocatalysts 424</p> <p>14.3 Transition Metal Nitride Electrocatalysts 433</p> <p>14.4 Carbon Support-Free Electrocatalysts 434</p> <p>14.5 Conclusions and Outlook 435</p> <p>Acknowledgment 436</p> <p>References 436</p> <p><b>15 Spectroscopy and Microscopy for Characterization of Fuel Cell Catalysts 443</b><br /><i>Chilan Ngo, Michael J. Dzara, Sarah Shulda, and Svitlana Pylypenko</i></p> <p>15.1 Introduction 443</p> <p>15.2 Electron Microscopy 444</p> <p>15.3 Electron Spectroscopy: Energy-dispersive Spectroscopy and Electron Energy Loss Spectroscopy 449</p> <p>15.4 X-ray Spectroscopy 451</p> <p>15.5 Gamma Spectroscopy: Mossbauer 455</p> <p>15.6 Vibrational Spectroscopy: Fourier Transform Infrared Spectroscopy and Raman Spectroscopy 456</p> <p>15.7 Complementary Techniques 459</p> <p>15.8 Conclusions and Outlook 462</p> <p><b>16 Rational Catalyst Design Methodologies: Principles and Factors Affecting the Catalyst Design 467</b><br /><i>Sergey Stolbov and Marisol Alcántara Ortigoza</i></p> <p>16.1 Introduction 467</p> <p>16.2 Oxygen Reduction Reaction 468</p> <p>16.3 Recent Progress in Search for Efficient ORR Catalysts 469</p> <p>16.4 Physics and Chemistry behind ORR 471</p> <p>16.5 Rational Design of ORR Catalysts 475</p> <p>16.6 Rationally Designed ORR Catalysts Addressing Cost-effectiveness 482</p> <p>16.7 Conclusions and Outlook 483</p> <p>References 483</p> <p><b>17 Effect of Gas Diffusion Layer Structure on the Performance of Polymer Electrolyte Membrane Fuel Cell 489</b><br /><i>Branko N. Popov, Sehkyu Park, and Jong-Won Lee</i></p> <p>17.1 Introduction 489</p> <p>17.2 Structure of Gas Diffusion Layer 490</p> <p>17.3 Carbon Materials 493</p> <p>17.4 Hydrophobic and Hydrophilic Treatments 494</p> <p>17.5 Microporous Layer Thickness 499</p> <p>17.6 Microstructure Modification 500</p> <p>17.7 Conclusions and Outlook 500</p> <p>Acknowledgment 505</p> <p>References 505</p> <p><b>18 Efficient Design and Fabrication of Porous Metallic Electrocatalysts 511</b><br /><i>Yaovi Holade, Anaïs Lehoux, Hynd Remita, Kouakou B. Kokoh, and Têko W. Napporn</i></p> <p>18.1 Introduction 511</p> <p>18.2 Advances in the Design and Fabrication of Mesoporous Metallic Materials 512</p> <p>18.3 Nanoporous Metallic Materials at Work in Electrocatalysis 520</p> <p>18.4 Conclusions and Outlook 526</p> <p>References 527</p> <p><b>19 Design and Fabrication of Dealloying-driven Nanoporous Metallic Electrocatalyst 533</b><br /><i>Zhonghua Zhang and Wang Ying</i></p> <p>19.1 Introduction 533</p> <p>19.2 Design of Precursors for Dealloying-driven Nanoporous Metallic Electrocatalysts 535</p> <p>19.3 Microstructural Modulation of Dealloying-driven Nanoporous Metallic Electrocatalysts 538</p> <p>19.4 Catalytic Properties of Dealloying-driven Nanoporous Metallic Electrocatalysts 542</p> <p>19.5 Conclusions and Outlook 551</p> <p>Acknowledgments 551</p> <p>References 551</p> <p><b>20 Recent Advances in Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction 557</b><br /><i>Kotaro Sasaki, Kurian A. Kuttiyiel, Jia X. Wang, Miomir B. Vukmirovic, and Radoslav R. Adzic</i></p> <p>20.1 Introduction 557</p> <p>20.2 Pt ML on Pd Core Electrocatalysts (PtML/Pd/C) 558</p> <p>20.3 Pt ML on PdAu Core Electrocatalyst (PtML/PdAu/C) 564</p> <p>20.4 Further Improving Activity and Stability of Pt ML Electrocatalysts 570</p> <p>20.5 Conclusions and Outlook 579</p> <p>Acknowledgments 579</p> <p>References 580</p> <p>Index 585</p>
Thandavarayan Maiyalagan is currently an Associate Professor of the Department of Chemistry at SRM University, Kattankulathur, India. He received his Ph.D in Physical Chemistry from the Indian Institute of Technology, Madras, and completed postdoctoral programs at Newcastle University (UK), Nanyang Technological University (Singapore) and at the University of Texas, Austin (USA). His main research interests concern new materials and their electrochemical properties for energy conversion and storage devices, electrocatalysts, fuel cells and biosensors. He has delivered various key lectures in many national and international forums. He has published over 80 articles on the innovative design of the materials for energy conversion and storage. <br> <br> Viswanathan S. Saji received his Ph.D. (2003) degree from the University of Kerala, India and was a Research Associate at the Indian Institute of Technology, Bombay (2004-2005) and the Indian Institute of Science, Bangalore (2005-2007). Later, he moved to South Korea where he was a Postdoctoral Researcher at Yonsei University (2007-2008) and Sunchon National University (2009), Research Professor at Chosun University (2008-2009), Senior Research Scientist at Ulsan National Institute of Science and Technology (2009-2010) and Research Professor at Korea University (2010-2013). In 2014, he joined the University of Adelaide, where he was an Endeavour Research Fellow in the School of Chemical Engineering. Presently, he is working as an Executive Director to CIOSHI, Kerala, India.
Meeting the need for a text on solutions to conditions which have so far been a drawback for this important and trend-setting technology, this monograph places special emphasis on novel, alternative catalysts of low temperature fuel cells. Comprehensive in its coverage, the text discusses not only the electrochemical, mechanistic, and material scientific background, but also provides extensive chapters on the design and fabrication of electrocatalysts.<br> A valuable resource aimed at multidisciplinary audiences in the fields of academia and industry.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
59,95 €