Details

Magnetoelectric Polymer-Based Composites


Magnetoelectric Polymer-Based Composites

Fundamentals and Applications
1. Aufl.

von: Senentxu Lanceros-Méndez, Pedro Martins

120,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 21.06.2017
ISBN/EAN: 9783527801343
Sprache: englisch
Anzahl Seiten: 280

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The first book on this topic provides a comprehensive and well-structured overview of the fundamentals, synthesis and emerging applications of magnetoelectric polymer materials. <br> Following an introduction to the basic aspects of polymer based magnetoelectric materials and recent developments, subsequent chapters discuss the various types as well as their synthesis and characterization. There then follows a review of the latest applications, such as memories, sensors and actuators. The book concludes with a look at future technological advances.<br> An essential reference for entrants to the field as well as for experienced researchers.<br>
<p>List of Contributors xi</p> <p>Preface and Acknowledgments xv</p> <p><b>1 Magnetoelectric Effect of Functional Materials: Theoretical Analysis,Modeling, and Experiment 1</b><br /><i>Jia-Wei Zhang, Hong-Yan Guo, Xiao Chen, and Rui-Tong Liu</i></p> <p>1.1 Introduction of Magnetoelectric Effect 1</p> <p>1.1.1 Single-Phase Magnetoelectric Materials 1</p> <p>1.1.2 Multiphase Materials 2</p> <p>1.2 Applications of Magnetoelectric Effect 2</p> <p>1.2.1 Magnetoelectric Sensors 3</p> <p>1.2.2 Magnetoelectric Transducer 3</p> <p>1.2.3 Magnetoelectric Microwave Devices 4</p> <p>1.3 Magnetoelectric Effect of Piezoelectric Ceramic 4</p> <p>1.4 Magnetoelectric Effect in Insulating Polymers 7</p> <p>1.5 Conclusion 11</p> <p>Acknowledgments 11</p> <p>References 11</p> <p><b>2 Materials Selection, Processing, and Characterization Technologies 13</b><br /><i>JingMa, Lu Song, Chen Liu, and Chengzhou Xin</i></p> <p>2.1 Introduction 13</p> <p>2.2 Materials Selection and Processing 14</p> <p>2.2.1 Polymer as the Piezoelectric/Ferroelectric Phase 15</p> <p>2.2.2 Piezoelectric Polymer as the Matrix 17</p> <p>2.2.3 Non-piezoelectric Polymer as the Active Matrix 18</p> <p>2.2.4 Polymer as the Binder 18</p> <p>2.3 Characterization Technologies 19</p> <p>2.3.1 Ferroelectric and Piezoelectric Characterization 19</p> <p>2.3.1.1 Piezoelectric Characterization 19</p> <p>2.3.1.2 Ferroelectric Characterization 20</p> <p>2.3.2 Magnetostrictive and Magnetism Characterization 22</p> <p>2.3.2.1 MagnetismMeasurement 23</p> <p>2.3.2.2 MagnetostrictionMeasurement 26</p> <p>2.3.3 Characterization of Magnetoelectric Coupling 27</p> <p>2.3.3.1 Direct Magnetoelectric Coupling 27</p> <p>2.3.3.2 Converse Magnetoelectric Coupling 30</p> <p>2.4 Concluding Remarks 34</p> <p>Acknowledgments 34</p> <p>References 34</p> <p><b>3 Types of Polymer-BasedMagnetoelectric Materials 45</b></p> <p>3a Laminates 47<br /><i>Marco Silva, PedroMartins, and Senentxu Lanceros-Mendez</i></p> <p>3a.1 Introduction 47</p> <p>3a.2 Laminated Magnetoelectric Composites 47</p> <p>3a.3 Piezoelectric Phase for Magnetoelectric Laminates 53</p> <p>3a.3.1 PVDF and Its Copolymers 53</p> <p>3a.3.2 Diamines 54</p> <p>3.4a Magnetostrictive Phase for Magnetoelectric Laminates 55</p> <p>3a.4.1 Metglas 55</p> <p>3a.4.2 VITROVAC 57</p> <p>3a.4.3 Terfenol-D 57</p> <p>3.5a Bonding Agent for Magnetoelectric Laminates 57</p> <p>3a.6 Structures for Magnetoelectric Laminates 58</p> <p>3a.7 Limitations and Remaining Challenges 59</p> <p>Acknowledgments 59</p> <p>References 60</p> <p>3b Polymer-BasedMagnetoelectric Composites: Polymer as a Binder 65<br /><i>Yang Song, De’an Pan, Zhijun Zuo, and Alex Alexei Volinsky</i></p> <p>3b.1 Introduction 65</p> <p>3b.2 Polymer-Based Tb1−xDyxFe2−y by MagneticWarm Compaction 66</p> <p>3b.2.1 Experiment for MagneticWarm Compaction 66</p> <p>3b.2.2 Results and Discussion of MagneticWarm Compaction 67</p> <p>3b.2.3 Conclusions for MagneticWarm Compaction 70</p> <p>3b.3 Multifaceted Magnetoelectric Composites 70</p> <p>3b.3.1 Experiment for Multifaceted Magnetoelectric Composites 70</p> <p>3b.3.2 Results and Discussion for Multifaceted Magnetoelectric Composites 70</p> <p>3b.3.3 Conclusions for Multifaceted Magnetoelectric Composites 73</p> <p>3b.4 Bonded Cylindrical Composites 73</p> <p>3b.4.1 Experiment for Bonded Cylindrical Composites 73</p> <p>3b.4.2 Results and Discussion for Bonded Cylindrical Composites 74</p> <p>3b.4.3 Conclusions for Bonded Cylindrical Composites 76</p> <p>3b.5 Multi-electrode Cylinder Composites 77</p> <p>3b.5.1 Experiment for Multi-electrode Cylinder Composites 77</p> <p>3b.5.2 Results and Discussion for Multi-electrode Cylinder Composites 78</p> <p>3b.5.3 Conclusions for Multi-electrode Cylinder Composites 81</p> <p>3b.6 Polymer Content and Particle Size Effects 81</p> <p>3b.6.1 Experiment for Polymer Content and Particle Size Effects 81</p> <p>3b.6.2 Results and Discussion for Polymer Content and Particle Size Effects 81</p> <p>3b.6.3 Conclusions for Polymer Content and Particle Size Effects 83</p> <p>Acknowledgments 84</p> <p>References 84</p> <p>3c Poly(vinylidene fluoride)-BasedMagnetoelectric Polymer Nanocomposite Films 87<br /><i>Thandapani Prabhakaran and Jawaharlal Hemalatha</i></p> <p>3c.1 Introduction 87</p> <p>3c.2 Ferroelectric Polymers 89</p> <p>3c.2.1 Poly(Vinylidene Fluoride) 90</p> <p>3c.2.2 Crystallization of β-Phase PVDF 91</p> <p>3c.2.2.1 By Solvent 91</p> <p>3c.2.2.2 By the Temperature 91</p> <p>3c.2.2.3 Electric Poling on PVDF 92</p> <p>3c.3 The Selection of Magnetic Nanofillers 93</p> <p>3c.4 ExperimentalMethods 94</p> <p>3c.4.1 Materials 94</p> <p>3c.4.2 Synthesis of Magnetic Nanoparticles 95</p> <p>3c.4.3 Fabrication of ME Polymer Nanocomposites 95</p> <p>3c.5 Characterization 96</p> <p>3c.5.1 IR Vibrational Studies 96</p> <p>3c.5.2 Surface Analysis on the Composites 98</p> <p>3c.5.3 Magnetic Studies on MPNCs 100</p> <p>3c.5.4 Correlation of F(;;) with Ferroelectric Parameters 102</p> <p>3c.5.5 Magnetoelectric Effect in MPNCs 102</p> <p>3c.6 Summary 107</p> <p>3c.7 Future Directions 108</p> <p>Acknowledgments 109</p> <p>References 109</p> <p><b>4 Low-Dimensional Polymer-BasedMagnetoelectric Structures 115</b><br /><i>Renato Gonçalves, Senentxu Lanceros-Mendez, and Pedro Martins</i></p> <p>4.1 Introduction 115</p> <p>4.2 Magnetoelectric Spheres 117</p> <p>4.3 Magnetoelectric Fibers 118</p> <p>4.4 MagnetoelectricMembranes 119</p> <p>4.5 Conclusions and Future Perspectives 120</p> <p>Acknowledgments 121</p> <p>References 122</p> <p><b>5 Design of Magnetostrictive Nanoparticles for Magnetoelectric Composites 125</b><br /><i>Victor Sebastian</i></p> <p>5.1 Introduction 125</p> <p>5.1.1 Magnetoelectric Composites 125</p> <p>5.1.2 Magnetostriction and Magnetostrictive Materials 126</p> <p>5.1.3 Ferromagnetic Ferrites 129</p> <p>5.1.4 Ferroelectric Perovskites 131</p> <p>5.2 Synthesis Approaches to Produce Magnetostrictive Nanoparticles for Magnetoelectric Composites 132</p> <p>5.2.1 Top-Down Production Approaches 133</p> <p>5.2.1.1 Mechanosynthesis or Mechanical Attrition 133</p> <p>5.2.1.2 Mechanical Alloying 134</p> <p>5.2.1.3 Inert-Gas Condensation Approach 134</p> <p>5.2.2 Bottom-Up Production Approaches 135</p> <p>5.2.2.1 Solid-State Reaction 135</p> <p>5.2.2.2 Pyrolysis 136</p> <p>5.2.2.3 Wet-Chemical Approaches 137</p> <p>5.3 Summary and Future Perspectives 145</p> <p>Acknowledgments 146</p> <p>References 146</p> <p><b>6 Applications of Polymer-BasedMagnetoelectric Materials 153</b></p> <p>6a Sensors, Actuators, Antennas, andMemories 155<br /><i>Sílvia Reis,Marco Silva, PedroMartins, and Senentxu Lanceros-Mendez</i></p> <p>6a.1 Introduction 155</p> <p>6a.2 Polymer-Based Magnetoelectric Sensors 156</p> <p>6a.3 Polymer-Based Magnetoelectric Actuators 159</p> <p>6a.4 Polymer-Based Magnetoelectric Antennas 161</p> <p>6a.5 Polymer-Based MagnetoelectricMemories 164</p> <p>6a.6 Opportunities, Limitations, and Remaining Challenges 165</p> <p>Acknowledgments 166</p> <p>References 166</p> <p>6b Magnetoelectric Composites for Bionics Applications 171<br /><i>Tian Zheng, Yan Zong, Zhilian Yue, Gordon G.Wallace, andMichael J. Higgins</i></p> <p>6b.1 Introduction 171</p> <p>6b.2 Bionics 171</p> <p>6b.2.1 Implantable Electrode Devices 171</p> <p>6b.2.2 Organic Electrode Materials 172</p> <p>6b.2.3 New Opportunities for Advanced Electrical Stimulation 173</p> <p>6b.3 Cell Interactions and Electrical Stimulation 175</p> <p>6b.3.1 Synthetic Polymer-Based ME 175</p> <p>6b.3.2 Nanostructured and Nanoscale ME Materials 177</p> <p>6b.3.3 ME Concept for Electrical Stimulation of Cells 179</p> <p>6b.4 Future Biomaterials for ME Composites 180</p> <p>6b.4.1 Piezoelectric DNA, Proteins, and Microorganisms 180</p> <p>6b.4.2 ME Biopolymers: Cellulose 182</p> <p>6b.5 Characterization Tools for Nanoscale ME 184</p> <p>6b.5.1 Piezoresponse Force Microscopy (PFM) 184</p> <p>6b.5.2 Bio-Atomic Force Microscopy (Bio-AFM) 187</p> <p>Acknowledgments 188</p> <p>References 189</p> <p>6c Energy Harvesting 197<br /><i>Chess Boughey and Sohini Kar-Narayan</i></p> <p>6c.1 Introduction 197</p> <p>6c.2 Magnetoelectric Composites for Energy Harvesting 198</p> <p>6c.2.1 Magnetostrictive Effect in Ferromagnetic Materials 200</p> <p>6c.2.2 Piezoelectricity in Polymers 201</p> <p>6c.2.3 Key Parameters, Equations, and Figures of Merit 205</p> <p>6c.2.4 Magnetoelectric Effect in Piezoelectric–Ferromagnetic Composites 208</p> <p>6c.3 Energy-Harvesting Devices Based on Magnetoelectric Composites 211</p> <p>6c.4 Conclusion 212</p> <p>References 215</p> <p>6d High-Temperature Polymers for Magnetoelectric Applications 225<br /><i>AlbertoMaceiras, José Luis Vilas, and LuisManuel León</i></p> <p>6d.1 Introduction 225</p> <p>6d.2 Types of Piezoelectric Polymers 226</p> <p>6d.2.1 Piezocomposites 226</p> <p>6d.2.2 Ferroelectrets 226</p> <p>6d.2.3 Bulk Piezoelectric Polymers 229</p> <p>6d.2.3.1 Semicrystalline Piezoelectric Polymers 229</p> <p>6d.2.3.2 Amorphous Piezoelectric Polymers 235</p> <p>6d.3 ME Effect Using Piezoelectric Polyimides 240</p> <p>6d.4 Summary and Conclusions 241</p> <p>References 242</p> <p><b>7 Open Questions, Challenges, and Perspectives 255</b><br /><i>PedroMartins and Senentxu Lanceros-Mendez</i></p> <p>References 258</p> <p>Index 259</p>
S. Lanceros-Mendez graduated in physics at the University of the Basque Country, Leioa, Spain. He obtained his PhD degree at the Institute of Physics of the Julius-Maximilians-Universitat Wurzburg, Germany. He was Research Scholar at Montana State University, Bozeman, MT, USA and visiting scientist at the, Pennsylvania State University, USA and University of Potsdam, among others. Since 2016 he is Ikerbasque Professor at the BCMaterials, Basque Center for Materials, Applications and Nanostructures, Derio, Spain. He is Associate Professor at the Physics Department of the University of Minho, Portugal (on leave), where he belongs to the Center of Physics. From 2012 to 2014 he was also Associate Researcher at the INL - International Iberian Nanotechnology Laboratory. His work is focused in the area of smart materials for sensors and actuators, energy and biomedical applications.<br> <br> Pedro Martins graduated in Physics and Chemistry in 2006 and received the PhD degree in Physics in 2012, both from the University of Minho, Braga, Portugal. From 2012 to 2014 he was also Visiting Researcher at the INL - International Iberian Nanotechnology Laboratory. He is now a postdoctoral researcher in the University of Minho, Braga, Portugal and his work is focused on polymer-based magnetoelectric materials and electroactive polymers for advanced technological applications. He collaborates with the Basque Country University, Spain; Wollongong University, Australia and Cambridge University, United Kingdom, among others.<br>
The first book on this topic provides a comprehensive and well-structured overview of the fundamentals, synthesis and emerging applications of magnetoelectric polymer materials. <br> Following an introduction to the basic aspects of polymer based magnetoelectric materials and recent developments, subsequent chapters discuss the various types as well as their synthesis and characterization. There then follows a review of the latest applications, such as memories, sensors and actuators. The book concludes with a look at future technological advances.<br> An essential reference for entrants to the field as well as for experienced researchers.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €