Details

Nanoelectronics


Nanoelectronics

Materials, Devices, Applications, 2 Volumes
Applications of Nanotechnology 1. Aufl.

von: Robert Puers, Livio Baldi, Marcel Van de Voorde, Sebastiaan E. van Nooten

286,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 11.04.2017
ISBN/EAN: 9783527800711
Sprache: englisch
Anzahl Seiten: 742

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Offering first-hand insights by top scientists and industry experts at the forefront of R&D into nanoelectronics, this book neatly links the underlying technological principles with present and future applications.</b></p> <p>A brief introduction is followed by an overview of present and emerging logic devices, memories and power technologies. Specific chapters are dedicated to the enabling factors, such as new materials, characterization techniques, smart manufacturing and advanced circuit design. The second part of the book provides detailed coverage of the current state and showcases real future applications in a wide range of fields: safety, transport, medicine, environment, manufacturing, and social life, including an analysis of emerging trends in the internet of things and cyber-physical systems. A survey of main economic factors and trends concludes the book.</p> <p>Highlighting the importance of nanoelectronics in the core fields of communication and information technology, this is essential reading for materials scientists, electronics and electrical engineers, as well as those working in the semiconductor and sensor industries.</p>
<p>Foreword by Andreas Wild XXV</p> <p>Nanoelectronics for Digital Agenda by Paul Rübig and Livio Baldi XXXVII</p> <p>Electronics on the EU's Political Agenda by Carl-Christian Buhr XLI</p> <p>Preface by Livio Baldi and Marcel H. van de Voorde XLVII</p> <p><b>Volume 1</b></p> <p><b>Part One Fundamentals on Nanoelectronics 1</b></p> <p><b>1 A Brief History of the Semiconductor Industry 3</b><br /><i>Paolo A. Gargini</i></p> <p>1.1 From Microelectronics to Nanoelectronics and Beyond 3</p> <p>1.2 The Growth of the Semiconductor Industry: An Eyewitness Report 22</p> <p>Acknowledgments 52</p> <p><b>2 More-than-Moore Technologies and Applications 53<br /></b><i>Joachim Pelka and Livio Baldi</i></p> <p>2.1 Introduction 53</p> <p>2.2 "More Moore" and "More-than-Moore" 54</p> <p>2.3 From Applications to Technology 56</p> <p>2.4 More-than-Moore Devices 58</p> <p>2.5 Application Domains 61</p> <p>2.6 Conclusions 70</p> <p>Acknowledgement 71</p> <p>References 71</p> <p><b>3 Logic Devices Challenges and Opportunities in the Nano Era 73<br /></b><i>Frédéric Boeuf</i></p> <p>3.1 Introduction: Dennard's Scaling and Moore's Law Trends and Limits 73</p> <p>3.2 Power Performance Trade-Off for 10 nm, 7 nm, and Below 75</p> <p>3.3 Device Structures and Materials in Advanced CMOS Nodes 89</p> <p><b>4 Memory Technologies 113<br /></b><i>Barbara De Salvo and Livio Baldi</i></p> <p>4.1 Introduction 113</p> <p>4.2 Mainstream Memories (DRAM and NAND): Evolution and Scaling Limits 115</p> <p>4.3 Emerging Memories Technologies 120</p> <p>4.4 Emerging Memories Architectures 130</p> <p>4.5 Opportunities for Emerging Memories 133</p> <p>4.6 Conclusions 134</p> <p><b>Part Two Devices in the Nano Era 137</b></p> <p><b>5 Beyond-CMOS Low-Power Devices: Steep-Slope Switches for Computation and Sensing 139<br /></b><i>Adrian M. Ionescu</i></p> <p>5.1 Digital Computing in Post-Dennard Nanoelectronics Era 139</p> <p>5.2 Beyond CMOS Steep-Slope Switches 143</p> <p>5.3 Convergence of Requirements for Energy-Efficient Computing and Sensing Technologies: Enabling Smart Autonomous Systems for IoE 148</p> <p>5.4 Conclusions and Perspectives 149</p> <p>References 151</p> <p><b>6 RF CMOS 153<br /></b><i>Patrick Reynaert, Wouter Steyaert and Marco Vigilante</i></p> <p>6.1 Introduction 153</p> <p>6.2 Toward 5G and Beyond 153</p> <p>6.3 CMOS @ Millimeter-Wave: Challenges and Opportunities 156</p> <p>6.4 Terahertz in CMOS 159</p> <p>6.5 Conclusions 161</p> <p>References 162</p> <p><b>7 Smart Power Devices Nanotechnology 163<br /></b><i>Gaudenzio Meneghesso, Peter Moens, Mikael Östling, Jan Sonsky, and Steve Stoffels</i></p> <p>7.1 Introduction 163</p> <p>7.2 Si Power Devices 164</p> <p>7.3 SiC Power Semiconductor Devices 176</p> <p>7.4 Power GaN Device Technology 184</p> <p>7.5 New Materials and Substrates for WBG Power Devices 198</p> <p>References 201</p> <p><b>8 Integrated Sensors and Actuators: Their Nano-Enabled Evolution into the Twenty-First Century 205<br /></b><i>Frederik Ceyssens and Robert Puers</i></p> <p>8.1 Introduction 205</p> <p>8.2 Sensors 208</p> <p>8.3 Actuators 214</p> <p>8.4 Molecular Motors 217</p> <p>8.5 Transducer Integration and Connectivity 218</p> <p>8.6 Conclusion 219</p> <p>References 220</p> <p><b>Part Three Advanced Materials and Materials Combinations 223</b></p> <p><b>9 Silicon Wafers as a Foundation for Growth 225<br /></b><i>Peter Stallhofer</i></p> <p>9.1 Introduction 225</p> <p>9.2 Si Availability and Technologies to Produce Hyperpure Silicon in Large Quantities 226</p> <p>9.3 The Exceptional Physical and Technological Properties of Monocrystalline Silicon for Device Manufacturing 237</p> <p>9.4 Silicon and New Materials 241</p> <p>9.5 Example of Actual Advanced 300 mm Wafer Specification for Key Parameters 242</p> <p>Acknowledgments 242</p> <p>References 242</p> <p><b>10 Nanoanalysis 245<br /></b><i>Narciso Gambacorti</i></p> <p>10.1 Three-Dimensional Analysis 246</p> <p>10.2 Strain Analysis 250</p> <p>10.3 Compositional and Chemical Analysis 256</p> <p>10.4 Conclusions 260</p> <p>Glossary 261</p> <p>Acknowledgments 262</p> <p>References 262</p> <p><b>Part Four Semiconductor Smart Manufacturing 265</b></p> <p><b>11 Front-End Processes 267<br /></b><i>Marcello Mariani and Nicolas Possémé</i></p> <p>11.1 A Standard MOS FEOL Process Flow 267</p> <p>11.2 Cleaning 268</p> <p>11.3 Silicon Oxidation 271</p> <p>11.4 Doping and Dopant Activation 272</p> <p>11.5 Deposition 275</p> <p>11.6 Etching 279</p> <p>Bibliography 288</p> <p><b>12 Lithography for Nanoelectronics 289<br /></b><i>Kurt Ronse</i></p> <p>12.1 Historical Perspective of Lithography for Nanoelectronics 289</p> <p>12.2 Challenges for Lithography in Future Technology Nodes 292</p> <p>12.3 Pattern Roughness: The Biggest Challenge for Geometrical Scaling 311</p> <p>12.4 Lithography Options in Previous and Future Technology Nodes 313</p> <p>References 315</p> <p><b>13 Reliability of Nanoelectronic Devices 317<br /></b><i>Anthony S. Oates and K.P. Cheung</i></p> <p>13.1 Introduction 317</p> <p>13.2 Interconnect Reliability Issues 318</p> <p>13.3 Transistor Reliability Issues 322</p> <p>13.4 Radiation-Induced Soft Errors in Silicon Circuits 325</p> <p>13.5 Conclusions 327</p> <p>Acknowledgments 328</p> <p>References 328</p> <p><b>Volume 2</b></p> <p><b>Part Five Circuit Design in Emerging Nanotechnologies 331</b></p> <p><b>14 Logic Synthesis of CMOS Circuits and Beyond 333<br /></b><i>Enrico Macii, Andreas Calimera, Alberto Macii, and Massimo Poncino</i></p> <p>14.1 Context and Motivation 333</p> <p>14.2 The Origin: Area and Delay Optimization 335</p> <p>14.3 The Power Wall 340</p> <p>14.4 Synthesis in the Nanometer Era: Variation-Aware 345</p> <p>14.5 Emerging Trends in Logic Synthesis and Optimization 350</p> <p>14.6 Summary 358</p> <p>References 358</p> <p><b>15 System Design in the Cyber-Physical Era 363<br /></b><i>Pierluigi Nuzzo and Alberto Sangiovanni-Vincentelli</i></p> <p>15.1 From Nanodevices to Cyber-Physical Systems 363</p> <p>15.2 Cyber-Physical System Design Challenges 365</p> <p>15.3 A Structured Methodology to Address the Design Challenges 370</p> <p>15.4 Platform-Based Design with Contracts and Related Tools 380</p> <p>15.5 Conclusions 390</p> <p>Acknowledgments 390</p> <p>References 390</p> <p><b>16 Heterogeneous Systems 397<br /></b><i>Daniel Lapadatu</i></p> <p>16.1 Introduction 397</p> <p>16.2 Heterogeneous Systems Design 400</p> <p>16.3 Heterogeneous Systems Integration 414</p> <p>16.4 Testing the Performance and Reliability of Heterogeneous Systems 418</p> <p>16.5 Conclusions 423</p> <p>Acknowledgments 424</p> <p>References 424</p> <p><b>17 Nanotechnologies Testing 427<br /></b><i>Ernesto Sanchez and Matteo Sonza Reorda</i></p> <p>17.1 Introduction 427</p> <p>17.2 Background 428</p> <p>17.3 Current Challenges 433</p> <p>17.4 Testing Advanced Technologies 437</p> <p>17.5 Conclusions 444</p> <p>References 444</p> <p><b>Part Six Nanoelectronics-Enabled Sectors and Societal Challenges 447</b></p> <p><b>18 Industrial Applications 449<br /></b><i>L. Baldi and M. Van de Voorde</i></p> <p>18.1 Introduction 449</p> <p>18.2 Health, Demographic Change, and Well-being 450</p> <p>18.3 Food Security, Sustainable Agriculture and Forestry, Marine and Maritime and Inland Water Research, and the Bioeconomy 450</p> <p>18.4 Secure, Clean, and Efficient Energy 451</p> <p>18.5 Smart, Green, and Integrated Transport 451</p> <p>18.6 Climate Action, Environment, Resource Efficiency, and Raw Materials 452</p> <p>18.7 Europe in a Changing World – Inclusive, Innovative, and Reflective Societies 452</p> <p>18.8 Secure Societies – Protecting Freedom and Security of Europe and Its Citizens 452</p> <p><b>19 Health 455</b><br /><i>Walter De Raedt and Chris Van Hoof</i></p> <p>19.1 Introduction 455</p> <p>19.2 The Worldwide Context 455</p> <p>19.3 Requirements and Use Cases for Emerging Wearables 459</p> <p>19.4 Conclusions 467</p> <p>References 468</p> <p><b>20 Smart Energy 471<br /></b><i>Moritz Loske</i></p> <p>20.1 Energy Revolution – Why Energy Does Have to Become Smart? 471</p> <p>20.2 Applications of Smart Energy Systems and their Societal Challenges 476</p> <p>20.3 Nanoelectronics as Key Enabler for Smart Energy Systems 483</p> <p>20.4 Summary and Outlook 486</p> <p>References 487</p> <p><b>21 Validation of Highly Automated Safe and Secure Vehicles 489<br /></b><i>Michael Paulweber</i></p> <p>21.1 Introduction 489</p> <p>21.2 Societal Challenges 490</p> <p>21.3 Automated Vehicles 491</p> <p>21.4 Key Requirements to Automated Driving Systems 493</p> <p>21.5 Validation Challenges 496</p> <p>21.6 Validation Concepts 497</p> <p>21.7 Challenges to Electronics Platform for Automated Driving Systems 498</p> <p>21.8 Conclusion 499</p> <p>References 499</p> <p><b>22 Nanotechnology for Consumer Electronics 501<br /></b><i>Hannah M. Gramling, Michail E. Kiziroglou, and Eric M. Yeatman</i></p> <p>22.1 Introduction 501</p> <p>22.2 Communications 503</p> <p>22.3 Energy Storage 506</p> <p>22.4 Sensors 509</p> <p>22.5 Internet-of-Things Applications 514</p> <p>22.6 Display Technologies 515</p> <p>22.7 Conclusions 520</p> <p>References 520</p> <p><b>Part Seven From Device to Systems 527</b></p> <p><b>23 Nanoelectronics for Smart Cities 529<br /></b><i>Joachim Pelka</i></p> <p>23.1 Why "Smart Cities"? 529</p> <p>23.2 Infrastructure: All You Need Is Information 531</p> <p>23.3 Nothing Will Work Without Energy 535</p> <p>23.4 Application: What Can Be Done with Information 537</p> <p>23.5 Trusted Hardware: Not Only for Data Security 546</p> <p>23.6 Closing Remarks 548</p> <p>Acknowledgement 548</p> <p><b>Part Eight Industrialization: Economics/Markets – Business Values – European Visions – Technology Renewal and Extended Functionality 551</b></p> <p><b>24 Europe Positioning in Nanoelectronics 553<br /></b><i>Andreas Wild</i></p> <p>24.1 What is the "European" Industry 553</p> <p>24.2 European Strategic Initiatives 554</p> <p>24.3 Policy Implementation Instruments 556</p> <p>24.4 Europe's Market Position 558</p> <p>24.5 European Perspectives 564</p> <p><b>25 Thirty Years of Cooperative Research and Innovation in Europe: The Case for Micro- and Nanoelectronics and Smart Systems Integration 567<br /></b><i>Dirk Beernaert and Eric Fribourg-Blanc</i></p> <p>25.1 Introduction 567</p> <p>25.2 Nanoelectronics and Micro-Nanotechnology in the European Research Programs 570</p> <p>25.3 A Bit of History Seen from an ICT: Nanoelectronics Integrated Hardware Perspective 571</p> <p>25.4 ESPRIT I, II, III, and IV 572</p> <p>25.5 The 5th Framework (1998–2002) 574</p> <p>25.6 The 6th Framework (2002–2006) 575</p> <p>25.7 The 7th Framework (2007–2013) 576</p> <p>25.8 H2020 (2014–2020) 579</p> <p>25.9 Some Results of FP7 and H2020 581</p> <p>25.10 Results of the JTI ENIAC and ARTEMIS 583</p> <p>25.11 An Analysis of Beyond CMOS in FP7 and H2020 584</p> <p>25.12 MEMS, Smart Sensors, and Devices Related to Internet of Things 586</p> <p>25.13 From FP6 to FP7: An integrated approach for micro-nanoelectronics and micro-nanosystems 587</p> <p>25.14 Enabling the EU 2050+ Future: Superintelligence, Humanity, and the "Singularity" 589</p> <p>25.15 EU 2050±: Driven by a Superintelligence Ambient 590</p> <p>25.16 Conclusion 592</p> <p><b>26 The Education Challenge in Nanoelectronics 595<br /></b><i>Susanna M. Thon, Sean L. Evans, and Annastasiah Mudiwa Mhaka</i></p> <p>26.1 Introduction 595</p> <p>26.2 Traditional Programs in Nanoelectronics Education 596</p> <p>26.3 Challenges in Nanoelectronics Education 600</p> <p>26.4 New Cross-Discipline Applications 604</p> <p>26.5 Future Education Programs 605</p> <p>Acknowledgments 610</p> <p>References 610</p> <p><b>27 Conclusions 613<br /></b><i>Robert Puers, Livio Baldi, and Marcel Van de Voorde 613</i></p> <p>Index 617</p>
<p><b>Robert Puers</b> is Professor at the Faculty of Engineering of the Catholic University Leuven, Belgium, and Chair of the Leuven Nanocenter. He is a European research pioneer in micromachining, MEMS and packaging techniques, focused on biomedical implantable systems. Robert Puers took major efforts to increase the impact of MEMS in the international research community, in education as well as in industry. To commercialize his academic research achievements, he launched three spin-off companies, ICSense, Zenso and MinDCet.</p> <p><b>Livio Baldi</b> is currently a freelance consultant to Lfoundry S.r.l. He graduated in electronic engineering at the University of Pavia, Italy, and joined the company SGS-ATES (now STMicroelectronics) where he held various positions inside Central R&D. Later he was in charge of cooperative research projects for STMicroelectronics, within Framework Programmes and EUREKA programs for Nanoelectronics (MEDEA and CATRENE). He participated in setting-up the ETP Nanolectronics and has been active in the ENIAC and ECSEL JTIs.</p> <p><b>Marcel Van de Voorde</b> has 40 years` experience in European Research Organisations including CERN-Geneva, European Commission, with 10 years at the Max Planck Institute in Stuttgart, Germany. For many years, he was involved in research and research strategies, policy and management, especially in European research institutions. He holds a Professorship at the University of Technology in Delft, the Netherlands, as well as multiple visiting professorships in Europe and worldwide. He holds a doctor honoris causa and various honorary Professorships.<br />He is senator of the European Academy for Sciences and Arts, in Salzburg and Fellow of the World Academy for Sciences. He is a Fellow of various scientific societies and has been decorated by the Belgian King. He has authored of multiple scientific and technical publications and co-edited multiple books in the field of nanoscience and nanotechnology.</p> <p><b>Sebastiaan E. van Nooten</b> is currently an independent consultant to the semiconductor and semi-conductor equipment industry. After his graduation from the Technical University of Delft, The Netherlands, he joined the German company Telefunken. Subsequently, he held various positions in different companies in the European semiconductor equipment industry. Since 2007 he was engaged in several European cluster programs such as CATRENE and as project coordinator for ENIAC projects, a public-private partnership in nanoelectronics.</p>

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €