Details

Gas-Phase Synthesis of Nanoparticles


Gas-Phase Synthesis of Nanoparticles


1. Aufl.

von: Yves Huttel

151,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 24.02.2017
ISBN/EAN: 9783527698400
Sprache: englisch
Anzahl Seiten: 416

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifications of this method resulting in different specialized techniques, while the third discusses the post-growth treatment that can be applied to the nanoparticles. The whole is rounded off by a review of future perspectives and the challenges facing the scientific and industrial communities.<br> An excellent resource for anyone working with the synthesis of nanoparticles, both in academia and industry.
<p>List of Contributors xiii</p> <p>Preface xix</p> <p><b>Part I Introduction to Gas Phase Aggregation Sources 1</b></p> <p>1 History, Some Basics, and an Outlook 3<br /><i>Hellmut Haberland</i></p> <p>1.1 Introduction 3</p> <p>1.2 Three Types of Gas Aggregation Sources 5</p> <p>1.3 Development of the Magnetron Cluster Source 6</p> <p>1.4 Deposition Machine and Mass Spectra 9</p> <p>1.5 Some Experimental Questions 11</p> <p>1.6 Deposition of Clusters with Variable Kinetic Energy 14</p> <p>1.7 Outlook and Future Development 17</p> <p>2 Principles of Gas Phase Aggregation 23<br /><i>PatriceMélinon</i></p> <p>2.1 The Landscape 23</p> <p>2.2 Step 2: Nucleation 24</p> <p>2.3 Kinetic Nucleation Theory 26</p> <p>2.4 Clusters in Real Gases 30</p> <p>2.5 S > 1: Adiabatic Expansion 31</p> <p>2.6 S ?a 1: Supersonic Beam with Buffer Gas 33</p> <p>2.7 Size Distribution 33</p> <p>3 Types of Cluster Sources 39<br /><i>José A. De Toro, Peter S. Normile, and Christopher Binns</i></p> <p>3.1 High-Vacuum Free Beam Sources 39</p> <p>3.2 Generic Aspects of Design 39</p> <p>3.3 Seeded Supersonic Nozzle Source (SSNS) 40</p> <p>3.4 Thermal Gas Aggregation Source (TGAS) 42</p> <p>3.5 Sputter Gas Aggregation Source (SGAS) 42</p> <p>3.6 Laser Ablation Source (LAS) 45</p> <p>3.7 Pulsed-Arc Cluster Ion Source (PACIS) 46</p> <p>3.8 Pulsed Microplasma Cluster Source (PMCS) 47</p> <p>3.9 Comparison and Specialization of Sources 48</p> <p><b>Part II Modifications of Gas Phase Aggregation Sources 57</b></p> <p>4 The Double-Laser Ablation Source Approach 59<br /><i>Piero Ferrari, Jan Vanbuel, Yejun Li, Ting-Wei Liao, Ewald Janssens, and Peter Lievens</i></p> <p>4.1 Introduction 59</p> <p>4.2 Source Description 60</p> <p>4.3 Studies on Bimetallic Clusters 66</p> <p>4.4 Conclusions 74</p> <p>5 In-PlaneMultimagnetron Approach 79<br /><i>Grant E. Johnson and Julia Laskin</i></p> <p>5.1 Introduction 79</p> <p>5.2 The Multitarget Single-Magnetron Approach 82</p> <p>5.3 The Multimagnetron Approach 86</p> <p>5.4 Summary 95</p> <p>6 Adjustable Multimagnetron Approach 101<br /><i>Lidia Martínez</i></p> <p>6.1 Introduction 101</p> <p>6.2 Design and New Parameters of Multimagnetron Gas Aggregation Sources 104</p> <p>6.3 Possibilities in the Fabrication of Nanoparticles with Multimagnetron Approach 106</p> <p>6.4 Summary, Perspectives, and Applications 117</p> <p>7 Hollow Cylindrical Magnetron 123<br /><i>Vitor Toshiyuki Abrao Oiko, Artur Domingues Tavares de Sá, and Varlei Rodrigues</i></p> <p>7.1 Introduction 123</p> <p>7.2 Project Design and Implementation 124</p> <p>7.3 Characterization 126</p> <p>7.4 Cluster Production 128</p> <p>7.5 Alternative Cylindrical Geometries for Magnetron Sputtering 131</p> <p>7.6 Concluding Remarks 132</p> <p>8 High-Flux DC Magnetron Sputtering 137<br /><i>Marco César Maicas Ramos and María del Mar Sanz Lluch</i></p> <p>8.1 Introduction 137</p> <p>8.2 Gas Flow 139</p> <p>8.3 Oxygen-Assisted Synthesis 146</p> <p>8.4 Ion Beams 148</p> <p>8.5 Conclusions 152</p> <p>9 High-Flux Metal Vapor Cell 155<br /><i>Gail N. Iles</i></p> <p>9.1 Introduction 155</p> <p>9.2 Vapor Cell Components 156</p> <p>9.3 Vapor Pressure 159</p> <p>9.4 Methods and Techniques 163</p> <p>9.5 Devices Using Metal Vapor Cells 167</p> <p>9.6 Summary 171</p> <p>10 Microwave Plasma Synthesis of Nanoparticles 175<br /><i>Dieter Vollath</i></p> <p>10.1 Introduction 175</p> <p>10.2 Basic Design of Microwave Plasma Systems and Resulting Products 187</p> <p>10.3 Realization of Microwave Plasma Systems for Synthesis of Coated Nanoparticles 195</p> <p>11 Enhanced Synthesis of Aggregates by Reduced Temperature, Pulsed Magnetron Sputtering, and Pulsed Buffer Gas Delivery 203<br /><i>Vitezslav Stranak and Rainer Hippler</i></p> <p>11.1 Introduction to Nanoparticle Aggregation 203</p> <p>11.2 Experiment 204</p> <p>11.3 Kinetic Phenomena during Cluster Growth 205</p> <p>11.4 Pulsed Sputtering of Metal Target 212</p> <p>11.5 Pulsed Delivery of Buffer Gas 216</p> <p>11.6 Cluster Mass Flux in a Gas Dynamic System 221</p> <p>11.7 Conclusions 223</p> <p>12 High-Power Pulsed Plasmas 227<br /><i>Iris Pilch</i></p> <p>12.1 Background: High-Power Impulse Magnetron Sputtering 227</p> <p>12.2 Synthesis of Nanoparticles Using High-Power Pulsed Plasmas 230</p> <p>12.3 Summary and Outlook 239</p> <p>13 High-Pressure and Reactive Gas Magnetron Sputtering 243<br /><i>Lakshmi Kolipaka and Stefan Vajda</i></p> <p>13.1 Introduction 243</p> <p>13.2 Types of Reactive Sputtering 244</p> <p>13.3 Hysteresis Effect in DC Reactive Sputtering 244</p> <p>13.4 Methods to Overcome Hysteresis 246</p> <p>13.5 Arcing in Reactive Sputter Deposition 251</p> <p>13.6 Methods to Overcome Arcing Problem 251</p> <p>13.7 Modeling of Reactive Sputtering 254</p> <p>13.8 Implementation of High-Pressure and Reactive Gas Sputtering in Gas Aggregation Sources (GASs) 257</p> <p><b>Part III In-Flight Post-GrowthManipulation of Nanoparticles 269</b></p> <p>14 Coating 271<br /><i>Panagiotis Grammatikopoulos and Mukhles Sowwan</i></p> <p>14.1 Core/Shell Nanoparticles 271</p> <p>14.2 Fabrication Methods 273</p> <p>14.3 Structural Modification via In-flight Coating 278</p> <p>14.4 Summary 282</p> <p>15 Nanostructuring, Orientation, and Annealing 287<br /><i>Balamurugan Balasubramanian and David J. Sellmyer</i></p> <p>15.1 Introduction and Scope 287</p> <p>15.2 Control of Crystal Structures 287</p> <p>15.3 Nanostructuring 294</p> <p>15.4 Conclusions 298</p> <p>16 Deflection and Mass Filtering 303<br /><i>Marcel Di Vece</i></p> <p>16.1 Introduction 303</p> <p>16.2 Magnetic Deflection 305</p> <p>16.3 The Time-of-FlightMass Filter 306</p> <p>16.4 The Reflectron TOF Mass Filter 308</p> <p>16.5 The Quadrupole Mass Filter 308</p> <p>16.6 Aerodynamic Lenses 310</p> <p>16.7 TheWien Filter 312</p> <p>16.8 Magnetic Sector 312</p> <p>16.9 Cluster Ion Traps 313</p> <p>16.10 Matter-Wave Interferometry 313</p> <p>16.11 Comparison of Mass Filters 314</p> <p>16.12 Mass Filtering Requirements for Applications 315</p> <p>16.13 Conclusions 316</p> <p>17 In-Flight and Postdeposition Manipulation of Mass-Filtered Nanoparticles under Soft-Landing Conditions 323<br /><i>Joachim Bansmann, Armin Kleibert, Hendrik Bettermann, and Mathias Getzlaff</i></p> <p>17.1 Introduction 323</p> <p>17.2 In-Flight Manipulation of Cluster Beams 325</p> <p>17.3 Soft Landing 327</p> <p>17.4 Summary 333</p> <p>18 In-Flight Analysis 339<br /><i>Sergio D’Addato</i></p> <p>18.1 Introduction 339</p> <p>18.2 Electron Diffraction and X-ray Scattering Analysis of Clusters and Nanoparticles 340</p> <p>18.3 Photoelectron and X-ray Absorption Spectroscopy 345</p> <p>18.4 Magnetic Deflection Experiments 350</p> <p>18.5 X-ray Magnetic Circular Dichroism Experiments 355</p> <p>18.6 Conclusions 358</p> <p><b>Part IV Perspectives 365</b></p> <p>19 Nano- and Micromanufacturing with Nanoparticles Produced in the Gas Phase: An Emerging Tool for Functional and Length-Scale Integration 367<br /><i>PaoloMilani and Luca G. Bettini</i></p> <p>19.1 Introduction 367</p> <p>19.2 Site-Selected Nanoparticle Deposition 369</p> <p>19.3 Supersonic Cluster Beam Deposition 370</p> <p>19.4 System Integration Approach by SCBD 375</p> <p>19.5 Conclusions 380</p> <p>References 380</p> <p>Index 387</p>
Yves Huttel received his Ph.D. degree from the University of Paris-Sud, Orsay, France. After his degree he worked at the Synchrotron LURE, France, at the University of Paris-Sud, France, and at the ICMM-CSIC, Spain. He was also a postdoctoral researcher at the Synchrotron of Daresbury Laboratory, UK, before returning to the CSIC at the IMM. He joined the Surfaces, Coatings, and Molecular Astrophysics Department at the ICMM that belongs to the Consejo Superior de Investigaciones Cientificas (CSIC), Spain, with a Ramon y Cajal Fellowship. Since 2007, he has been working at the ICMM as a Permanent Scientist and he leads the Low-Dimensional Advanced Materials Group. His research focuses on low-dimensional systems including surfaces, interfaces and nanoparticles, as well as XMCD, XPS and nanomagnetism.

Diese Produkte könnten Sie auch interessieren:

Nanoscale Science and Technology
Nanoscale Science and Technology
von: Robert Kelsall, Ian W. Hamley, Mark Geoghegan
PDF ebook
88,99 €
Nanotechnology
Nanotechnology
von: Jurgen Schulte
PDF ebook
91,99 €
Scaling Issues and Design of MEMS
Scaling Issues and Design of MEMS
von: Salvatore Baglio, Salvatore Castorina, Nicolo Savalli
PDF ebook
110,99 €