Details

Open-Space Microfluidics


Open-Space Microfluidics

Concepts, Implementations, Applications
1. Aufl.

von: Emmanuel Delamarche, Govind V. Kaigala

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 18.01.2018
ISBN/EAN: 9783527696796
Sprache: englisch
Anzahl Seiten: 440

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Summarizing the latest trends and the current state of this research field, this up-to-date book discusses in detail techniques to perform localized alterations on surfaces with great flexibility, including microfluidic probes, multifunctional nanopipettes and various surface patterning techniques, such as dip pen nanolithography. These techniques are also put in perspective in terms of applications and how they can be transformative of numerous (bio)chemical processes involving surfaces.<br> The editors are from IBM Zurich, the pioneers and pacesetters in the field at the forefront of research in this new and rapidly expanding area.<br>
<p>Foreword xv</p> <p>Preface xvii</p> <p><b>Part I Hydrodynamic Flow Confinement (HFC) 1</b></p> <p><b>1 Hydrodynamic Flow Confinement Using a Microfluidic Probe 3<br /></b><i>Emmanuel Delamarche, Robert D. Lovchik, Julien F. Cors, and Govind V. Kaigala</i></p> <p>1.1 Introduction 3</p> <p>1.2 HFC Principle 4</p> <p>1.3 MFP Heads 7</p> <p>1.4 Vertical MFP 8</p> <p>1.5 Advanced MFP Heads and Holders 9</p> <p>1.6 Surface Processing Using an MFP 11</p> <p>1.7 MFP Components 15</p> <p>1.8 Outlook 16</p> <p>Acknowledgments 17</p> <p>References 17</p> <p><b>2 Hierarchical Hydrodynamic Flow Confinement (hHFC) and Recirculation for Performing Microscale</b> <b>Chemistry on Surfaces 21<br /></b><i>Julien F. Cors, Julien Autebert, Aditya Kashyap, David P. Taylor, Robert D. Lovchik, Emmanuel</i> <i>Delamarche, and Govind V. Kaigala</i></p> <p>2.1 Introduction 21</p> <p>2.2 Hierarchical HFC 22</p> <p>2.2.1 Minimal Dilution of the Processing Liquid 22</p> <p>2.2.2 Numerical Simulations of Hierarchical HFC 22</p> <p>2.2.3 Dilution Measurement of hHFC 25</p> <p>2.2.4 Microscale Chemistry Using hHFC 26</p> <p>2.3 Recirculation 28</p> <p>2.3.1 Recirculation of Small Volumes of Liquids within an MFP Head 28</p> <p>2.3.2 AnalyticalModel: Diffusive Transport between Two Laminar Flows in hHFC 30</p> <p>2.4 Microscale Deposition 33</p> <p>2.4.1 Patterning Proteins on Surfaces 33</p> <p>2.4.2 Protein Deposition Using hHFC and Recirculation 35</p> <p>2.4.3 AnalyticalModel: Convective Transport between Two Laminar Flows in hHFC 39</p> <p>2.4.4 Conclusion and Outlook 42</p> <p>Acknowledgments 43</p> <p>References 43</p> <p><b>3 Design of Hydrodynamically ConfinedMicroflow Devices with Numerical Modeling: Controlling Flow</b> <b>Envelope, Pressure, and Shear Stress 47<br /></b><i>Choongbae Park, Kevin V. Christ, and Kevin T. Turner</i></p> <p>3.1 Introduction 47</p> <p>3.2 Theory 48</p> <p>3.2.1 Pressure, Velocity Distribution, and Nondimensional Quantities 48</p> <p>3.2.2 Shear Stress 50</p> <p>3.3 Device and ExperimentalMethods for CFD Validation 50</p> <p>3.4 Numerical Modeling of HCM devices 52</p> <p>3.5 Envelope Size and Pressure Drop Across HCMs 54</p> <p>3.6 Hydrodynamic Loads Generated by HCM Devices 58</p> <p>3.7 Concluding Remarks 60</p> <p>References 60</p> <p><b>4 Hele-Shaw Flow Theory in the Context of Open Microfluidics: From Dipoles to Quadrupoles 63<br /></b><i>Étienne Boulais and Thomas Gervais</i></p> <p>4.1 Introduction 63</p> <p>4.2 Fundamentals of Hele-Shaw Flows 64</p> <p>4.2.1 Derivation of Hele-Shaw Equation from the Navier–Stokes Equation 64</p> <p>4.2.2 Hele-Shaw Point Sources, Round Monopoles, and Square Monopoles 68</p> <p>4.3 Applications to Microfluidic Dipoles and Quadrupoles 69</p> <p>4.3.1 Velocity Potentials for Dipoles and Quadrupoles 70</p> <p>4.3.2 Deriving Key Operation Characteristics for Dipoles and Quadrupoles 71</p> <p>4.3.2.1 Stagnation Points and the Hydrodynamic Flow Confinement Zone 71</p> <p>4.3.3 Numerical Investigation of Model Accuracy 74</p> <p>4.4 Diffusion in Hele-Shaw Flows 76</p> <p>4.4.1 Advection–Diffusion Transport Equations 76</p> <p>4.4.2 High Péclet Number Asymptotic Solutions Near Stagnation Points 77</p> <p>4.4.2.1 Floating Gradient Along the Central Line in a Microfluidic Quadrupole 78</p> <p>4.4.2.2 Diffusion Broadening in the HFC Envelope for Dipoles and Quadrupoles 80</p> <p>4.4.3 Numerical Investigation of Model Accuracy 80</p> <p>4.5 Conclusion 81</p> <p>References 82</p> <p><b>5 Implementation and Applications of Microfluidic Quadrupoles 83<br /></b><i>Ayoola T. Brimmo andMohammad A. Qasaimeh</i></p> <p>5.1 Introduction 83</p> <p>5.2 Principles and Configurations of MQs 85</p> <p>5.3 Implementation of MQs 87</p> <p>5.4 MQ Analysis and Characterization 88</p> <p>5.4.1 Stagnation Point Visualization 88</p> <p>5.4.2 Hydrodynamic Flow Confinement 90</p> <p>5.4.3 Concentration Gradient Measurement 91</p> <p>5.4.4 Stagnation Point Hydrodynamic Manipulation 92</p> <p>5.5 Application of MQs in Biology and Life Sciences 94</p> <p>5.5.1 MQs for Biochemical Concentration Gradient Assays 94</p> <p>5.5.2 Studying Neutrophil Chemotaxis Using the Lateral MQ 95</p> <p>5.6 Summary and Outlook 95</p> <p>References 98</p> <p><b>6 Hydrodynamic Flow Confinement-Assisted Immunohistochemistry from Micrometer to Millimeter</b> <b>Scale 101<br /></b><i>Robert D. Lovchik, David P. Taylor, Emmanuel Delamarche, And Govind V. Kaigala</i></p> <p>6.1 Immunohistochemical Analysis of Tissue Sections 101</p> <p>6.2 Probe Heads for Multiscale Surface Interactions 102</p> <p>6.2.1 Probe Design and Operating Conditions for Millimeter-Scale HFCs 103</p> <p>6.2.2 Slit-Aperture Probes 105</p> <p>6.2.3 Aperture-Array Probes 105</p> <p>6.3 Immunohistochemistry with Microfluidic Probes 107</p> <p>6.4 Micro-IHC on Human Tissue Sections 108</p> <p>6.4.1 Micro-IHC on Tissue Microarrays 109</p> <p>6.5 Millimeter-Scale Immunohistochemistry 109</p> <p>6.6 Outlook 112</p> <p>Acknowledgments 113</p> <p>References 113</p> <p><b>7 Local Nucleic Acid Analysis of Adherent Cells 115<br /></b><i>Aditya Kashyap, Deborah Huber, Julien Autebert, and Govind V. Kaigala</i></p> <p>7.1 Introduction 115</p> <p>7.1.1 Heterogeneity in Cells and Their Microenvironments 115</p> <p>7.1.2 State of the Art: Microfluidic Devices for Nucleic Acid Analysis 116</p> <p>7.1.3 Microfluidic Probe for Spatial Probing of Standard Biological Substrates 119</p> <p>7.2 Methods 121</p> <p>7.2.1 MFP Platform, Head, and Handling 121</p> <p>7.2.2 Cell Handling 122</p> <p>7.2.3 μFISH Protocol 123</p> <p>7.2.4 Local Lysis and Sample Retrieval Protocol 123</p> <p>7.2.5 DNA and RNA Quantification 124</p> <p>7.3 Results 124</p> <p>7.3.1 Genomic Analysis 126</p> <p>7.3.1.1 Study of Chromosomal Characteristics of Adherent Cells Using μFISH 124</p> <p>7.3.1.2 Operational Parameterization for μFISH 126</p> <p>7.3.1.3 Improved Probe Incubation and Consumption Using μFISH 126</p> <p>7.3.1.4 μFISH Allows for SpatialMultiplexing of Probes 127</p> <p>7.3.1.5 Selective Local Lysis for DNA Analysis Using the MFP (Spatialyse) 127</p> <p>7.3.1.6 Operational Parameterization and Liquid Handling for Spatialyse 127</p> <p>7.3.1.7 Quantitation of DNA in Local Lysate 129</p> <p>7.3.2 Transcriptomic Analysis 130</p> <p>7.3.2.1 Spatially Resolved Probing of Gene Expression in Adherent Cocultures 130</p> <p>7.4 Discussion 131</p> <p>7.5 Concluding Remarks 133</p> <p>Acknowledgments 134</p> <p>References 134</p> <p><b>8 Microfluidic Probe for Neural Organotypic Brain Tissue and Cell Perfusion 139<br /></b><i>Donald MacNearney, Mohammad A. Qasaimeh, and David Juncker</i></p> <p>8.1 Introduction 139</p> <p>8.2 Microperfusion of Organotypic Brain Slices Using the Microfluidic Probe 141</p> <p>8.2.1 Design of Perfusion Chamber for Organotypic Brain Slice Culture 141</p> <p>8.2.2 Design of PDMS MFP 143</p> <p>8.2.3 Microscope Setup 147</p> <p>8.2.4 Microperfusion of Organotypic Brain Slices 148</p> <p>8.3 Microperfusion of Live Dissociated Neural Cell Cultures Using the Microfluidic Probe 148</p> <p>8.4 Conclusion 152</p> <p>Acknowledgments 153</p> <p>References 153</p> <p><b>9 The Multifunctional Pipette 155<br /></b><i>Aldo Jesorka and Irep Gözen</i></p> <p>9.1 Introduction 155</p> <p>9.2 Open Volume Probes 157</p> <p>9.3 Detailed View on the Multifunctional Pipette 159</p> <p>9.3.1 Chip Concept 159</p> <p>9.3.2 Device Design and Function 161</p> <p>9.3.3 Fabrication 165</p> <p>9.4 Integrated Functions 167</p> <p>9.4.1 Valveless Switching 168</p> <p>9.4.2 Control Schematics 169</p> <p>9.4.3 Operation 170</p> <p>9.5 Functional Extensions and Applications 172</p> <p>9.5.1 In-Channel Electrodes 172</p> <p>9.5.2 Single-Cell Superfusion 173</p> <p>9.5.3 Optofluidic Thermometer 173</p> <p>9.5.4 Multiprobe Operation 175</p> <p>9.5.5 Lab-on-a-Membrane 176</p> <p>9.6 Future Technology 178</p> <p>9.6.1 Materials and Fabrication 179</p> <p>9.6.2 Collection and Integration of Assays and Sensors 181</p> <p>9.6.3 Automation 182</p> <p>Acknowledgments 183</p> <p>References 183</p> <p><b>10 Single-Cell Analysis with the BioPen 187<br /></b><i>Irep Gözen, Gavin Jeffries, Tatsiana Lobovkina, Emanuele Celauro, Mehrnaz Shaali, Baharan Ali Doosti,</i> <i>and Aldo Jesorka</i></p> <p>10.1 Introduction 187</p> <p>10.2 The Single-Cell Challenge 189</p> <p>10.2.1 Single-Cell Analysis 189</p> <p>10.2.2 Technology Overview 190</p> <p>10.2.3 Adherent Cells 191</p> <p>10.3 Superfusion Techniques 192</p> <p>10.3.1 Hydrodynamic Confinement 192</p> <p>10.4 The BioPen 193</p> <p>10.5 Application Areas 194</p> <p>10.5.1 Cell Zeiosis and Ion Channel Activation 194</p> <p>10.5.2 Single Cell Enzymology 196</p> <p>10.5.3 Local Temperature Adjustment and Measurement in a Single-Cell Environment 199</p> <p>10.5.4 Intercellular Communication 202</p> <p>10.5.5 Single-Cell Viability Test 203</p> <p>10.5.6 Single Muscle Fiber Physiology 205</p> <p>10.5.7 Single-Cell Electroporation 208</p> <p>10.5.8 Local Superfusion of Tissue Slices 210</p> <p>10.6 Future Technology 213</p> <p>Acknowledgments 215</p> <p>References 215</p> <p><b>11 Microfluidic Probes for Single-Cell Proteomic Analysis 221<br /></b><i>Aniruddh Sarkar, LidanWu, and Jongyoon Han</i></p> <p>11.1 Introduction 221</p> <p>11.2 Technical Requirements of Single-Cell Proteomic Analysis 223</p> <p>11.3 Methods for Single-Cell Proteomic Analysis 225</p> <p>11.4 Microfluidics Enabling Next-Generation Single-Cell Proteomics 229</p> <p>11.5 Open-Ended Microwells for Proteomic and Multiparameter Single-Cell Studies 231</p> <p>11.6 Microfluidic Probes in In Situ Single-Cell Proteomic Measurement 231</p> <p>11.7 Outlook for FutureWork with Microfluidic Single-Cell Proteomic Assay 236</p> <p>11.7.1 Sensitivity 236</p> <p>11.7.2 Throughput 238</p> <p>11.7.3 Porting Other Assays to the Microfluidic Probe 240</p> <p>11.7.4 Applications in Single-Cell Biology 241</p> <p>11.8 Conclusion 242</p> <p>References 242</p> <p><b>Part II Localized Chemistry 249</b></p> <p><b>12 Aqueous Two-Phase Systems for Micropatterning of Cells and Biomolecules 251<br /></b><i>Stephanie L. Ham and Hossein Tavana</i></p> <p>12.1 Introduction 251</p> <p>12.2 Small Molecules Applications 253</p> <p>12.2.1 Bioreagent Patterning 253</p> <p>12.2.2 Antibody Assays 253</p> <p>12.2.3 Collagen Microgels 256</p> <p>12.3 Cell Patterning 258</p> <p>12.3.1 Bacterial Cells 258</p> <p>12.3.2 Mammalian Cells 260</p> <p>12.3.2.1 Cell Exclusion and Cell Island Patterning 260</p> <p>12.3.2.2 Cell Co-Culturing 262</p> <p>12.3.2.3 Heterocellular Stem Cell Niche Engineering 264</p> <p>12.3.2.4 Skin Tissue Engineering 265</p> <p>12.3.2.5 Three-Dimensional Cellular Models 266</p> <p>12.4 Conclusions 269</p> <p>Acknowledgments 269</p> <p>References 269</p> <p><b>13 Development of Pipettes as Mobile Nanofluidic Devices for Mass Spectrometric Analysis 273<br /></b><i>Anumita Saha-Shah and Lane A. Baker</i></p> <p>13.1 Introduction 273</p> <p>13.2 Segmented Flow Analysis 275</p> <p>13.3 Utility of Nano- and Micropipettes in Mass Spectrometry 276</p> <p>13.4 Development of Nanopipette Probes for Local Sampling 276</p> <p>13.5 MALDI-MS Analysis of Analyte Post-Nanopipette Sampling 278</p> <p>13.5.1 Single Allium cepa Cell Analysis 279</p> <p>13.5.2 Lipid Analysis in Mouse Brain 280</p> <p>13.6 Development of Segmented Flow Sampling 282</p> <p>13.7 Study of Intercellular Heterogeneity 286</p> <p>13.8 Conclusion and Outlook 288</p> <p>Acknowledgments 290</p> <p>References 290</p> <p><b>14 FluidFM: Development of the Instrument as well as Its Applications for 2D and 3D Lithography 295<br /></b><i>Tomaso Zambelli, Mathias J. Aebersold, Pascal Behr, Hana Han, Luca Hirt, VincentMartinez, Orane</i> <i>Guillaume-Gentil, and János Vörös</i></p> <p>14.1 Microchanneled AFM Cantilevers 296</p> <p>14.1.1 Silicon-Based Hollow Probes 296</p> <p>14.1.2 Polymer-Based Hollow Probes 297</p> <p>14.2 Development of the FluidFM 300</p> <p>14.3 Calibration of Hollow Probes: Stiffness and Flow 303</p> <p>14.3.1 Stiffness 303</p> <p>14.3.2 Flow 305</p> <p>14.4 FluidFM as Lithography Tool in Liquid 308</p> <p>14.4.1 Patterning Nanoparticles 308</p> <p>14.4.2 Electrochemical 2D Patterning and 3D Printing 312</p> <p>14.5 Conclusions and Outlook 316</p> <p>Acknowledgments 317</p> <p>References 317</p> <p><b>15 FluidFM Applications in Single-Cell Biology 325<br /></b><i>Orane Guillaume-Gentil,MaximilianMittelviefhaus, Livie Dorwling-Carter, Tomaso Zambelli and Julia A.</i> <i>Vorholt</i></p> <p>15.1 Introduction 325</p> <p>15.2 Nondestructive Cell Manipulations 326</p> <p>15.3 Spatial Cell Manipulation 327</p> <p>15.3.1 Substrate Micropatterning 327</p> <p>15.3.2 Pick and Place 329</p> <p>15.3.3 Cell Dispensing/Removal 330</p> <p>15.4 Controlled Fluid Delivery 331</p> <p>15.4.1 Extracellular Fluid Delivery 332</p> <p>15.4.2 Intracellular Fluid Delivery 333</p> <p>15.5 Mechanical Measurements 335</p> <p>15.5.1 Quantification of Cell Elasticity 336</p> <p>15.5.2 Quantification of Single-Cell Adhesion Forces 337</p> <p>15.6 Ionic Current Measurements 341</p> <p>15.6.1 Adaptation of the FluidFM Setup for Picoampere Current Measurements 342</p> <p>15.6.2 Force-Controlled Patch Clamp with the FluidFM 343</p> <p>15.6.3 Scanning Ion Conductance Microscopy with the FluidFM 346</p> <p>15.7 Molecular Analyses 348</p> <p>15.8 Conclusion and Future Perspectives 349</p> <p>References 350</p> <p><b>16 Soft Probes for Scanning ElectrochemicalMicroscopy 355<br /></b><i>Tzu-En Lin, Andreas Lesch, Alexandra Bondarenko, Fernando Cortés-Salazar, and Hubert H. Girault</i></p> <p>16.1 Introduction 355</p> <p>16.2 Principles of Scanning Electrochemical Microscopy (SECM) 356</p> <p>16.2.1 SECM Feedback Mode 356</p> <p>16.2.2 SECM Generation/Collection Modes 358</p> <p>16.3 Soft Probes for SECM 358</p> <p>16.3.1 Fabrication and Characterization 359</p> <p>16.3.2 Operation Principles 360</p> <p>16.4 Applications of Soft SECM Probes 360</p> <p>16.4.1 Reactivity Imaging of Extended Three-Dimensional Samples 362</p> <p>16.4.2 High-Throughput Patterning and Imaging of Delicate Surfaces 362</p> <p>16.4.3 Detection of Cancer Biomarkers in Skin Biopsy Sections 364</p> <p>16.5 Conclusions and Future Perspectives 368</p> <p>References 368</p> <p><b>17 Microfluidic Probes for Scanning Electrochemical Microscopy 373<br /></b><i>Alexandra Bondarenko, Fernando Cortés-Salazar, Tzu-En Lin, Andreas Lesch, and Hubert H. Girault</i></p> <p>17.1 Introduction 373</p> <p>17.2 Combining Microfluidics with SECM 374</p> <p>17.2.1 Fountain Pen Probe 374</p> <p>17.2.2 Electrochemical Push–Pull Probes 375</p> <p>17.3 Electrochemical Characterization 377</p> <p>17.3.1 Cyclic Voltammetry 377</p> <p>17.3.2 SECM Experiments 378</p> <p>17.4 Applications 382</p> <p>17.4.1 SECM Imaging of Human Fingerprints Contaminated with Explosive Traces 382</p> <p>17.4.2 Monitoring Enzymatic Reactions 384</p> <p>17.4.3 Local Manipulation of Adherent Live Cell Microenvironments 385</p> <p>17.5 Conclusions and Outlook 389</p> <p>References 389</p> <p><b>18 Chemistrode for High Temporal- and Spatial-Resolution Chemical Analysis 391<br /></b><i>Alexander J. Donovan and Ying Liu</i></p> <p>18.1 Introduction 391</p> <p>18.2 Chemistrode Design and Operation 394</p> <p>18.2.1 Chemistrode Design and Fabrication 394</p> <p>18.2.2 Chemistrode Operation 394</p> <p>18.3 Physical Principles Governing the Transport Processes 395</p> <p>18.3.1 Non-dimensional Groups 395</p> <p>18.3.2 Coalescence Dynamics of Incoming Plugs with the Hydrophilic Substrate 396</p> <p>18.3.3 Mass Transfer at the Hydrophilic Substrate 398</p> <p>18.4 Multiform Chemical Analysis Independent in Space and Time from Data Acquisition 400</p> <p>18.4.1 Online Analysis 400</p> <p>18.4.2 Parallel Offline Analysis 401</p> <p>18.5 Applicability for Stimuli–Response Surfaces 403</p> <p>18.5.1 Single Islet Cell Stimulation and Response Analysis 403</p> <p>18.5.2 Isolation and Incubation of Individual Cells from Multispecies Mixtures 405</p> <p>18.6 Challenges and Future Directions 406</p> <p>Acknowledgments 407</p> <p>References 407</p> <p>Index 411</p>
Emmanuel Delamarche studied chemistry in Toulouse, France, and joined IBM Research in Zurich, Switzerland, in 1992 for his PhD in biochemistry with an academic affiliation to the University of Zurich. He then worked on surface patterning techniques involving scanning probe methods, self-assembled monolayers, soft lithography, and microfluidics.<br> Currently, he leads a research group at IBM Research on "precision diagnostics" with the goal of solving medical problems using microfluidics, micro- and nanotechnology and collaborations with biological and medical experts.<br> Dr. Delamarche has authored more than 120 scientific publications and has received numerous awards, including the Werner Prize from the Swiss Chemical Society in 2006.<br> <br> Govind Kaigala obtained his PhD from the University of Alberta, Canada, in 2008. After a postdoctoral stay at Stanford University, USA, he moved to IBM Research in Zurich, Switzerland, in 2010. His research interests include micro/nano-bio-systems and assays for microchip-based chemical and biomolecular analysis.<br> He is currently leading activities on liquid-based non-contact scanning technologies - microfluidic probe - and is championing concepts on "microfluidics in the open space" and "tissue microprocessing". These research activities are driven by specific needs in the fields of pathology and personalized medicine.<br> Dr. Kaigala has authored more than 40 scientific publications and received several awards, including an IBM Research Division Accomplishment Award and the 2014 Horizon Alumni Award from the University of Alberta.<br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €