Details

Handbook of Industrial Inkjet Printing


Handbook of Industrial Inkjet Printing

A Full System Approach
1. Aufl.

von: Werner Zapka

340,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.09.2017
ISBN/EAN: 9783527687176
Sprache: englisch
Anzahl Seiten: 984

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. <br> After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience.<br> Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.
<p>Introduction xxix</p> <p>Volume 1</p> <p><b>Part One Pros and Cons of Inkjet Technology    1 </b></p> <p>1 Pros and Cons of Inkjet Technology in Industrial Inkjet Printing 3 <br /><i>Werner Zapka </i></p> <p>2 Comparing Inkjet with Other Printing Processes and Mainly Screen Printing 7 <br /><i>Gunter Huebner </i></p> <p>2.1 Comparing Inkjet with Screen   Printing 11</p> <p>2.2 Screen Printing Principles and Capabilities 13</p> <p>2.3 Variants of Screen Printing Techniques 14</p> <p>2.4 Controlling Layer Thickness 16</p> <p>2.5 Achievable Resolution 17</p> <p>2.6 Application Examples 18</p> <p>2.7 Conclusion and Further Sources of Information 20</p> <p>References   21</p> <p><b>Part Two Inks    23 </b></p> <p>3 A System Approach to Develop New Platforms of Industrial Inkjet Inks 25 <br /><i>Mark Bale </i></p> <p>3.1 Introduction 25</p> <p>3.2 Ink Technologies for Industrial   Inkjet 26</p> <p>3.3  Ink Characterization Methods 31</p> <p>3.4  Printhead Evaluation 38</p> <p>3.5  Print  Process Factors 44</p> <p>3.6  Case Study: Hybrid Aqueous–UV 48</p> <p>References   57</p> <p>4 Photoinitiators 59 <br /><i>Kurt Dietliker and Jürgen Baro </i></p> <p>4.1 Historical Background 59</p> <p>4.2 Photoinitiators 60</p> <p>References   111</p> <p>5 UV Radiation Sources and UV Radiation    Measurement 117<br /><i>Jürgen Baro and Kurt Dietliker </i></p> <p>5.1 UV Radiation and Energy 117</p> <p>5.2 UV Radiation Sources 118</p> <p>5.3 UV Radiation Measurement 123</p> <p>References   128</p> <p>6 UV-Curable Inkjet Inks and Their Applications in Industrial Inkjet Printing, Including Low-Migration Inks for Food Packaging 129 <br /><i>Marc Graindourze </i></p> <p>6.1 UV Inks for Industrial  Applications 129</p> <p>6.2 UV Curing Process and UV Inkjet Ink   Types 130</p> <p>6.3 UV Inkjet Ink  Requirements 132</p> <p>6.4 UV Inkjet Ink Compounds and Ink Formulations 134</p> <p>6.5 UV Inkjet Ink Production 138</p> <p>6.6 Application of UV Inks in Industrial Print   Systems 139</p> <p>6.7 Low-Migration Inkjet  Inks for Migration-Sensitive  Applications 142</p> <p>References   148</p> <p>7 Ceramic Inkjet Inks 151<br /><i>Miguel Ángel Jovaní Boix</i></p> <p>7.1 Introduction 151</p> <p>7.2 Ceramic Ink Characteristics</p> <p>7.3 Ink Properties 154</p> <p>7.4 Shelf Life and Storage 156</p> <p>7.5 Printing 157</p> <p>7.6 Safety Considerations    160</p> <p>8  Aqueous Inks and Their Application Areas in Industrial Inkjet Printing and Desktop Printing 163<br /><i>Philip Double and John Stoffel </i></p> <p>8.1  Introduction 163</p> <p>8.2  Dye-Based Inks 167</p> <p>8.3  Inks with Pigments as Colorants 172</p> <p>8.4 Other Aqueous Inks 176</p> <p>8.5 Summary and Outlook 176</p> <p>References   176</p> <p>9 Dye Sublimation Inkjet Inks and Applications 179<br /><i>Ming Xu </i></p> <p>9.1 Overview 179</p> <p>9.2 Introduction 179</p> <p>9.3 Major Advantages of Sublimation Imaging 181</p> <p>9.4 Sublimation Colorants in Digital Imaging 182</p> <p>9.5 Ink, Transfer Media, and Substrate 184</p> <p>9.6 Color  Considerations 187</p> <p>9.7 Major Engineering Aspects 188</p> <p>9.8 Major  Development  Opportunities 191</p> <p>9.9 Summary 193</p> <p>References   193  </p> <p>10 A Full-System Approach to Formulation of Metal Nanoparticle Inks for Industrial Inkjet Printing 195<br /><i>Carsten Schauer and Alexander Rösch </i></p> <p>10.1   Introduction Inks 195</p> <p>10.2   Development and Manufacturing of Functional Particles and Inks 195</p> <p>10.3   Characterization of Fluid Systems and Printed    Patterns 200</p> <p>10.4   Reliability Characterization 212</p> <p>10.5   Summary 213</p> <p>References   213</p> <p>11 Metal Nanoparticle Conductive Inks for Industrial Inkjet Printing Applications 215<br /><i>Hiroshi Saito and Haruyuki Nakajo </i></p> <p>11.1   Introduction 215</p> <p>11.2   Results and Discussion 216</p> <p>11.3   Conclusions 222</p> <p>References   222</p> <p>12 Organic Light-Emitting Diode (OLED) and Quantum Dot (QD) Inks and Application 225<br /><i>Alexander Lange and Armin Wedel </i></p> <p>12.1   OLED Basics 225</p> <p>12.2   Inkjet Printing of OLED Devices 225</p> <p>12.3   QD Basics 233</p> <p>12.3.1  Inkjet Printing of QLED Devices 235</p> <p>12.3.2  Inkjet Printing of QDs on Paper 235</p> <p>References 236</p> <p><b>Part Three Inkjet Printhead Technology  239 </b></p> <p>13 Concepts and Strategies to Adapt Inkjet Printing to Industrial Application Requirements 241<br /><i>Tim Rosario </i></p> <p>13.1   Introduction 241</p> <p>13.2   Legacy Products 241</p> <p>13.3   Establishing New Technologies 241</p> <p>13.4   Q-Class Delivers New Technologies to   Market 243</p> <p>13.5   RediJet: An Innovative New Technology 244</p> <p>13.6   StarFireTM  SG1024/C: A Direct Response 245</p> <p>13.7   StarFire SG1024/A: Built on Success 246</p> <p>13.8   Samba: Embracing Printhead Technologies 246</p> <p>13.9   Key Samba Technologies 247</p> <p>13.10 Looking Forward 248</p> <p>13.11 Printhead Offerings (Tables  13.1–13.3) 249</p> <p>14 Konica Minolta's Inkjet Printhead Technology 253<br /><i>John Corrall </i></p> <p>14.1   Early History 253</p> <p>14.2   Strengths 267</p> <p>14.3   Markets and Geography 278</p> <p>14.4   Future Direction 280</p> <p>15 Xaar's Inkjet Printing Technology and Applications 285<br /><i>Jürgen Brünahl, Angus Condie, Mark Crankshaw, Tony Cruz-Uribe, and Werner Zapka </i></p> <p>15.1   Xaar Company Introduction 285</p> <p>15.2   Bulk Technology 285</p> <p>15.3   Three-Cycle Acoustic Firing 289</p> <p>15.4   Hybrid Side Shooter Architecture: Xaar 1001 Family 295</p> <p>15.5   Edge-Mounted Side Shooter Architecture: Xaar 501 Family 296</p> <p>15.6   Ink Recirculation (TF) Technology 297</p> <p>15.7   Print Bar System 300</p> <p>15.8   MEMS Drop Ejectors with Thin Film Piezoelectric Actuators 301</p> <p>15.9   New Inkjet Applications and   Development 306</p> <p>15.10   Summary 309</p> <p>References   310</p> <p>16 Hewlett Packard’s Inkjet Printhead Technology 313<br /><i>Steven J. Simske </i></p> <p>16.1   Fundamentals  of  Inkjet Printing 313</p> <p>16.2   Evolution of the Number of Nozzles 319</p> <p>16.3   Current/Future Improvements: Page-Wide Printing 320</p> <p>16.4   Inkjetting for Other Processes 321</p> <p>16.5   A Possible Future of Inkjet in Custom and Surface Manufacturing 322</p> <p>16.6   Case Study: HP Page-Wide Array 326</p> <p>References 331</p> <p>17 Memjet's Inkjet Printhead Technology and Associated Printer Components 335<br /><i>Mike Puyot </i></p> <p>17.1   A History of  Innovation 335</p> <p>17.2   The Memjet Printing System 335</p> <p>17.3   The  Technical History of Memjet 336</p> <p>17.4   The Memjet Printhead 336</p> <p>17.5   Manufacturing the Memjet Printhead 338</p> <p>17.6   Designed for Success 339</p> <p>17.7   Balancing Cost versus  Performance 341</p> <p>17.8   Memjet Inks 342</p> <p>17.9   A Holistic Approach to Printing Systems 342</p> <p>17.10 Memjet in the Marketplace 343</p> <p>17.11 Future Innovations for Ink and Printheads 346</p> <p>17.12 Continuing to Set the Standard 348</p> <p>References 348</p> <p>18 KODAK's Stream Inkjet Technology 351<br /><i>Michael Piatt, Douglas Bugner, James Chwalek, and James Katerberg </i></p> <p>18.1   Introduction 351</p> <p>18.2   Principle of Operation 351</p> <p>18.3   MEMS Technology-Based Printheads 354</p> <p>18.4   Scalable Technology 354</p> <p>18.5   Image Quality 355</p> <p>18.6   Ink Technology 357</p> <p>18.7   Substrates 358</p> <p>18.8   The Future of Stream   Technology 359</p> <p>References 359</p> <p><b>Part Four Substrates 361 </b></p> <p>19 Paper and Paper-Based Substrates for Industrial Inkjet Printing 363<br /><i>Wolfgang A. Schmidt </i></p> <p>19.1   Definition of Paper 363</p> <p>19.2   Properties of Paper 364</p> <p>19.3   Coated Paper, Coating Types, and Surface Properties 368</p> <p>References   370</p> <p>20 Polymeric Nonabsorbing Substrates for Industrial Inkjet Printing Applications 373<br /><i>Rita Hofmann </i></p> <p>20.1   Materials: Chemical Composition, Manufacturing Process 373</p> <p>20.2   Film Manufacturing 377</p> <p>20.3   Material Properties: Chemical, Thermal, Mechanical, Optical, Eco-Environmental 380</p> <p>References   389</p> <p>21 Glass Substrates for Industrial Inkjet Printing Applications 391<br /><i>Lutz Parthier, Thomas Wiegel, Clemens Ottermann, and Fredrik Prince </i></p> <p>21.1   Introduction: Glass a Universal Material 391</p> <p>21.2   Glass Types and Main  Characteristics 391</p> <p>21.3   Manufacturing  Process 392</p> <p>21.4   Physical and Chemical  Properties 393</p> <p>21.5   Surface Treatments 397</p> <p>21.6   Glass Material 401</p> <p>21.7   Structuring 405</p> <p>References 407</p> <p><b>Part Five Metrology 409</b></p> <p>22 Measurement of Complex Rheology and Jettability of Inkjet Inks 411<br /><i>Tri Tuladhar </i></p> <p>22.1   Introduction 411</p> <p>22.2   Ink Flow Behavior 413</p> <p>22.3   Bulk and Dynamic Ink Properties 414</p> <p>22.4   Complex Rheology  Characterization  Tools at Jetting  Conditions 416</p> <p>22.5   Selective Selection of Additives to Optimize Complex Rheology during Ink  Formulations 423</p> <p>22.6   Correlation of Complex Rheology with Jetting  Behavior 425</p> <p>22.7   Conclusions 428</p> <p>References 429</p> <p>23 Printhead Health in Industrial Inkjet Printing: In-Line and Off-Line Detection of Poor Drop Formation 431<br /><i>Herman Wijshoff </i></p> <p>23.1   Introduction 431</p> <p>23.2   Failure Origins 432</p> <p>23.3   Sensing 435</p> <p>23.4   Feedforward  Control 441</p> <p>References 442</p> <p>24 Quantitative Assessment of Inkjet Reliability under Industrial Conditions: Measuring All Drops during Extended High-Duty Printing 445<br /><i>Ingo Reinhold and Tomáš Černý </i></p> <p>24.1   Summary 445</p> <p>24.2   Idea  and  Experimental Setup 445</p> <p>24.3   Theoretical  Considerations 447</p> <p>24.4   Analysis Algorithm 449</p> <p>References   457</p> <p>25 In-Line Resistance and Temperature Measurement of Conductive Inks 459<br /><i>J.P. Teunissen, R. Abbel, R. Hendriks, and P. Groen </i></p> <p>Reference 461</p> <p><b>Part Six Data Flow 463 </b></p> <p>26 Data Handling in Industrial Inkjet Printing 465<br /><i>Steven J. Simske </i></p> <p>26.1   The Extent of Data 465</p> <p>26.2   Preparing for the Data 466</p> <p>Reference 467</p> <p><b>Volume 2 </b></p> <p><b>Part Seven Machine Integration 469</b></p> <p>27 System Approach: An Integrator's Advice on a System Approach for Industrial Inkjet Implementations 471<br /><i>Werner Van de Wynckel </i></p> <p>27.1   System Approach 471</p> <p>27.2   The Demonstrator Fail 472</p> <p>27.3   Automate the Right Process 472</p> <p>27.4   Early Total Cost of Ownership 473</p> <p>27.5   Chemical Compatibility 473</p> <p>27.6   Pressures: Wanted and Unwanted 475</p> <p>27.7   Temperatures Affects Not Just the Fluid 477</p> <p>27.8   Ink Systems 478</p> <p>27.9   Maintenance Systems 480</p> <p>27.10 Motion Systems 481</p> <p>27.11 Preprocesses 483</p> <p>27.12 Postprocesses 484</p> <p>27.13 Electronics and Software 485</p> <p>27.14 Humans Are Part of the Total System 487</p> <p>27.15 A Small Example: To Pin or Not to  Pin 487</p> <p>27.16 Be Not Afraid of the System But Use It 488</p> <p>Reference 488</p> <p>28 Functional Inkjet Platforms: Modular Integration of Industrial Production Processes 489<br /><i>Kai Keller and David Stüwe </i></p> <p>28.1   Introduction 489</p> <p>28.2   Role of the Integrator 490</p> <p>28.3   Inkjet is Complex: There Is No “Best for Anything” 490</p> <p>28.4   Important Aspects of Realizing an Inkjet Process 492</p> <p>28.5   Platform Design 501</p> <p>28.6   Complexity  and Performance 505</p> <p>Reference 505</p> <p><b>Part Eight   Pre- and Postprocesses 507</b></p> <p>29 Surface Pretreatment  for  Wettability Adjustment 509<br /><i>Gerhard Liebel and Matthias Beß </i></p> <p>29.1   Substrate Surface Condition Matters! 509</p> <p>29.2   Surface Pretreatment Methods 512</p> <p>29.3   Industrial Use of Surface Pretreatment 518</p> <p>29.4   Choosing the Right Pretreatment Method 525</p> <p>29.5   Shelf Life 527</p> <p>29.6   Summary 528</p> <p>30 UV LED Ink Curing: UV LED Technology and Solutions for Integration into Industrial Inkjet Printing 529<br /><i>Dirk Exner </i></p> <p>30.1   What Is UV LED Curing? 529</p> <p>30.2   UV LED Technology Components 529</p> <p>30.3   Emission Spectrum 533</p> <p>30.4   Power Specifications 535</p> <p>30.5   Material Formulation 537</p> <p>30.6   UV LED Benefits 537</p> <p>30.7   Markets and Applications 538</p> <p>30.8   Integration Considerations 540</p> <p>30.9   Summary and Outlook 541</p> <p>References 542</p> <p>31 Electron-Beam Processing for Industrial Inkjet Printing: Cross-Linking and Curing 543<br /><i>Urs V. Läuppi </i></p> <p>31.1   EB Processes 543</p> <p>31.2   Advantages of EB-Processing 544</p> <p>31.3   Differences between EB and UV Curing 545</p> <p>31.4   Curing or Drying 545</p> <p>31.5   Operating Parameters 547</p> <p>31.6   The Classic EB Processor 550</p> <p>31.7   The  ebeam Lamp 550</p> <p>31.8   EB for Inkjet Applications 553</p> <p>31.9   Summary 555</p> <p>Further Reading    556</p> <p>32 Photonic Curing Enabling High-Speed Sintering of Metal Inkjet Inks on Temperature-Sensitive  Substrates 557<br /><i>Vahid Akhavan, Kurt Schroder, and Stan Farnsworth </i></p> <p>32.1   Photonic Curing of Inkjet-Printed Films 557</p> <p>32.2   Technology Behind Photonic Curing 558</p> <p>32.3   Inkjet Printing Combined with Photonic Curing 561</p> <p>32.4   Summary  and Conclusions 564</p> <p>References   565</p> <p>33 Oven Drying of Inkjet-Printed Functional Fluids on Industrial Scale 567<br /><i>Gerard Kaper and Ronald de Graaf </i></p> <p>33.1   Drying Process: How to Open the Black  Box 567</p> <p>33.2   Convective Drying Oven 567</p> <p>33.3   Convective Drying Process 569</p> <p>33.4   Oven Temperatures 571</p> <p>33.5   Air Flow Speed 572</p> <p>33.6   Web Temperature 573</p> <p>33.7   Lower Explosion Level (LEL) 574</p> <p>33.8   Condensation 574</p> <p>33.9   Contamination Control 575</p> <p>33.10   Conclusion 578</p> <p><b>Part Nine Printing Strategies  579 </b></p> <p>34 Turning Industrial Application Requirements into Real Solutions 581<br /><i>Tim Rosario </i></p> <p>34.1   Application  Development 581</p> <p>34.2   Productivity 582</p> <p>34.3   Single-Pass Printing 583</p> <p>34.4   Imaging Models 589</p> <p>34.5   High Standoff  Printing 591</p> <p>34.6   Summary 596</p> <p>References 597</p> <p><b>Part Ten Application Development  599 </b></p> <p>35 Inkjet  Printing  for  Printed Electronics 601<br /><i>J. Pit Teunissen, R. Abbel, T. Eggenhuizen, E. Rubingh, M. Coenen, H. Gorter, and P. Groen </i></p> <p>35.1   Technology 601</p> <p>35.2   Application Examples 605</p> <p>35.3   Conclusions 614</p> <p>References 615</p> <p>36 Inkjet-Printed Metal Lines and Sensors on 2D and 3D Plastic Substrates 617<br /><i>Polzinger Bernhard, Keck Jürgen, Eberhardt Wolfgang, and Zimmermann André </i></p> <p>36.1   Introduction 617</p> <p>36.2   Inkjet  Printing  of Metal  Lines  on Injection-Molded Substrates 618</p> <p>36.3   Electrical Connection of Printed Metal Lines 620</p> <p>36.4   Inkjet Printing of Metal Lines on 3D  Surfaces 622</p> <p>36.5   Sensors on Injection-Molded Thermoplastic Substrates 624</p> <p>36.6   Challenges for Commercialization 631</p> <p>36.7   Summary 632</p> <p>36.8   About  Hahn-Schickard 632</p> <p>References   632</p> <p>37 Inkjet and Laser Hybrid Processing: An Enabling Technology for Reliable Production of Fine Interconnects in Large-Area Electronics 635<br /><i>Adam Brunton and Mickey Crozier </i></p> <p>37.1   M-Solv 635</p> <p>37.2   Introduction 635</p> <p>37.3   Hybrid Process Examples 636</p> <p>37.4   Conclusion 645</p> <p>References   646</p> <p>38 Industrial 3D Inkjet Printing/Additive Manufacturing 649<br /><i>Neil Hopkinson and Patrick J. Smith </i></p> <p>38.1   Overview of Additive  Manufacturing 649</p> <p>38.2   Inkjet as a Commercially Attractive Enabler in Industrial 3D Printing/ Additive  Manufacturing 649</p> <p>38.3   Inkjet Printing and Reaction 651</p> <p>38.4   Inkjet Printing to Enable Selective  Sintering 654</p> <p>38.5   Future Outlook for Inkjet in Industrial 3D Printing/Additive Manufacturing 659</p> <p>References   659</p> <p>39 Industrial Applications of 3D Inkjet Printing in Life Sciences 661<br /><i>James W. Stasiak </i></p> <p>39.1   Introduction 661</p> <p>39.2   Inkjet Printhead Technology 662</p> <p>39.3   Printing Functional Materials 664</p> <p>39.4   Inkjet-Based Bioprinting 666</p> <p>39.5   Commercial  Inkjet-Based  Bioprinting Technologies 669</p> <p>39.6   Inkjet-Based Drug Discovery 674</p> <p>39.7   Summary and Outlook 677</p> <p>References 678</p> <p><b>Part Eleven  Successful Implementations and Case Studies   681 </b></p> <p>40 Inkjet Technology within the Label Converting Market 683<br /><i>Carl Smith </i></p> <p>40.1   Inkjet Printing of Labels 683</p> <p>40.2   Label Functionality 684</p> <p>40.3   Not Just a Print Process, but a Manufacturing Process 685</p> <p>40.4   Converting Processes 689</p> <p>40.5   The Advantage of Digital  Hybrid 697</p> <p>40.6   Models of Converting Using  Inkjet 702</p> <p>40.7   The  Inkjet Advantage 707</p> <p>40.8   Market Sectors 708</p> <p>40.9   Trends in the Industry 708</p> <p>40.10   Creating a Successful Integration 714</p> <p>40.11   Example of Commercially Available Inkjet Label Press  – Graphium 720</p> <p>Further Reading    722</p> <p>41 Case Study: Digital Label Converting FFEI Ltd – Graphium 723<br /><i>Carl Smith </i></p> <p>41.1   Graphium Digital Hybrid Label  Press 723</p> <p>41.2   Productivity 723</p> <p>41.3   Reliability 725</p> <p>41.4   Easing the Production of Complex Label Designs 726</p> <p>41.5   Print Quality 727</p> <p>41.6   Managing a Hybrid Production System 727</p> <p>41.7   Intelligent Layout 728</p> <p>42 Case Study Gallus Labelfire: Guiding Question to Choose a Hybrid Inline Label Converting System 731<br /><i>Martin Leonhard </i></p> <p>42.1   Summary 736</p> <p>43 Cylindrical Packaging Decoration: A Breakthrough in Inkjet Technology 737<br /><i>John Corall </i></p> <p>43.1   Introduction 737</p> <p>43.2   Background to the Client 737</p> <p>43.3   Background to IIJ and Konica Minolta Ink Jet Division 738</p> <p>43.4   The Link with Martinenghi 738</p> <p>43.5   Ink and UV 741</p> <p>43.6   Projects and Delivering 742</p> <p>43.7   Realization of a Dream 745</p> <p>44 Industrial Inkjet Printing in Decorative Web Print Applications 747<br /><i>Patrik Lutz </i></p> <p>44.1   Introduction 747</p> <p>44.2   Technical Description of Decor  Printing  with Inkjet  Printing 748</p> <p>44.3   Applications 756</p> <p>44.4   Example of an Inkjet-Based Machine for Décor   Printing 757</p> <p>References   759</p> <p>45 Case Study at TecnoFerrari: Design of a Single-Pass Inkjet Printer for Ceramic Tile Decoration – From Machine Concept to a Complete Solution 761<br /><i>Alberto Annovi </i></p> <p>45.1   Ceramic Tiles Decoration Requirements 761</p> <p>45.2   Design of a Single-Pass Inkjet Printer for Ceramic Tile Decoration 772</p> <p>45.3   Roadmap for Next Future Tile Inkjet   Printing 781</p> <p>Bibliography 785</p> <p>46 Concepts for “Direct-to-Shape” Inkjet Printing onto Curved Surfaces 787<br /><i>Debbie Thorp and Nick Geddes </i></p> <p>46.1   Introduction 787</p> <p>47 Case Study at KHS: Digital Decoration of Plastic Bottles – From Machine Concept to a Complete Solution 799<br /><i>Martin Schach and Katrin Preckel </i></p> <p>47.1   Introduction 799</p> <p>47.2   Machine  Concept 802</p> <p>47.3   Ink 811</p> <p>47.4   Customers Requirements, Software, and User Concept 814</p> <p>47.5   Industry 4.0 and Direct Print 815</p> <p>48 Hymmen Digital Décor Printing: Empowering the Laminate Industry 817<br /><i>Aliasgar Eranpurwala </i></p> <p>48.1   Introduction 817</p> <p>48.2   The Laminate Flooring Industry 817</p> <p>48.3   Why the Shift to Digital Printing? 820</p> <p>48.4   Hymmen’s Approach: The JUPITER Digital Printing  Line 821</p> <p>48.5   Technical Challenges 825</p> <p>48.6   Case Study 1: Roll to Roll JUPITER JPT-W-840 827</p> <p>48.7   Case Study 2: Board Printing JUPITER JPT-C-2100 828</p> <p>48.8   Key Features 830</p> <p>48.9   Outlook:  Improvements Ahead 831</p> <p>49 High-Speed Inkjet Application in Newspaper Printing 833<br /><i>Peter Schulmeister </i></p> <p>49.1   Introduction 833</p> <p>49.2   Applications and Business Models 833</p> <p>49.3   Newspaper  Printing 836</p> <p>49.4   Requirements for Inline Digital Printing  in  Newspapers 840</p> <p>49.5   Inkjet Print Technologies 841</p> <p>49.6   The Manroland Web Systems Product Inkjet Integration 842</p> <p>49.7 Print Quality Optimization 848</p> <p>50 Inkjet for Nanoimprint Lithography 851<br /><i>Whitney Longsine, Matt C. Traub, and Van N. Truskett </i></p> <p>50.1   Introduction 851</p> <p>50.2   Nanoimprint Lithography Process 853</p> <p>50.3   Inkjet System Design Considerations 854</p> <p>50.4   J-FIL Applications in  Semiconductors 862</p> <p>50.5   Looking Forward 864</p> <p>References   867</p> <p>Glossary 869</p> <p>Index    877</p>
Werner Zapka is manager of the Advanced Application Technology team of XaarJet AB (Jarfalla, Sweden) where inkjet processes are developed specifically with functional fluids for digital fabrication. In 1980 Werner Zapka earned his Ph.D. in physics at the Max-Planck-Institute in Gottingen, Germany, on design and applications of excimer lasers. He then moved to IBM Research Labs, USA, and IBM Germany, engaging himself for 14 years in research and development in semiconductor, electronic packaging and laser technology. In 1995 he joined MIT-inkjet, which was renamed in 1999 to XaarJet AB, to develop inkjet printheads and their manufacturing processes.<br> Since 2009 he is also appointed as Adjunct Professor at Royal Institute of Technology (KTH) in Stockholm, Sweden, where is developing smart packaging solutions by way of inkjet printing of functional fluids.<br> He has authored more than 60 scientific publications and holds 22 patents. Furthermore, he obtained six IBM Invention Achievement Awards and serves on the committee of the annual Digital Fabrication conferences.

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €