Details

Nanomaterials for 2D and 3D Printing


Nanomaterials for 2D and 3D Printing


1. Aufl.

von: Shlomo Magdassi, Alexander Kamyshny

151,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 08.02.2017
ISBN/EAN: 9783527685806
Sprache: englisch
Anzahl Seiten: 376

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The first book to paint a complete picture of the challenges of processing functional nanomaterials for printed electronics devices, and additive manufacturing fabrication processes.<br> Following an introduction to printed electronics, the book focuses on various functional nanomaterials available, including conducting, semi-conducting, dielectric, polymeric, ceramic and tailored nanomaterials. Subsequent sections cover the preparation and characterization of such materials along with their formulation and preparation as inkjet inks, as well as a selection of applications. These include printed interconnects, passive and active modules, as well as such high-tech devices as solar cells, transparent electrodes, displays, touch screens, sensors, RFID tags and 3D objects. The book concludes with a look at the future for printed nanomaterials.<br> For all those working in the field of printed electronics, from entrants to specialized researchers, in a number of disciplines ranging from chemistry and materials science to engineering and manufacturing, in both academia and industry.<br> <br>
<p>List of Contributors xiii</p> <p><b>1 Printing Technologies for Nanomaterials 1<br /> </b><i>Robert Abbel and Erwin R. Meinders</i></p> <p>1.1 Introduction 1</p> <p>1.2 Ink Formulation Strategies 4</p> <p>1.3 Printing Technologies 6</p> <p>1.3.1 Inkjet Printing 7</p> <p>1.3.1.1 Toward 3D Printing 10</p> <p>1.3.2 Laser-Induced Forward Transfer 11</p> <p>1.3.2.1 Toward 3D Printing 13</p> <p>1.3.3 Contact Printing Technologies 13</p> <p>1.3.4 Photopolymerization 17</p> <p>1.3.5 Powder Bed Technology 19</p> <p>1.4 Summary and Conclusions 20</p> <p>References 20</p> <p><b>2 Inkjet Printing of Functional Materials and Post-Processing 27<br /> </b><i>Ingo Reinhold</i></p> <p>2.1 Introduction 27</p> <p>2.2 Industrial Inkjet 28</p> <p>2.3 Postprocessing of Metal-Based Inks for Conductive Applications 30</p> <p>2.3.1 Mechanisms in Solid-State Sintering 32</p> <p>2.3.2 Influence of Drying and Wet Sintering 34</p> <p>2.3.3 Thermal Sintering 35</p> <p>2.3.4 Chemical Sintering 35</p> <p>2.3.5 Plasma Sintering 36</p> <p>2.3.6 Sintering Using Electromagnetic Fields 37</p> <p>2.3.6.1 Impulse Light Sintering 39</p> <p>2.3.6.2 Microwave Sintering 40</p> <p>2.3.6.3 Influence of the Substrate 41</p> <p>2.4 Conclusion 42</p> <p>References 43</p> <p><b>3 Electroless Plating and Printing Technologies 51<br /> </b><i>Yosi Shacham-Diamand, Yelena Sverdlov, Stav Friedberg, and Avi Yaverboim</i></p> <p>3.1 Introduction 51</p> <p>3.2 Electroless Plating – Overview 54</p> <p>3.2.1 Electroless Plating – Brief Overview 55</p> <p>3.3 Seed Layer Printing 57</p> <p>3.4 Electroless Plating on Printed Parts 57</p> <p>3.4.1 Methods and Approaches 59</p> <p>3.4.1.1 Printed Pd Seed 59</p> <p>3.4.1.2 Printed Ag Ink 60</p> <p>3.4.1.3 Preseed Surface Modification 60</p> <p>3.4.2 Electroless Metal Integration: Examples 60</p> <p>3.5 Summary and Conclusions 63</p> <p>References 64</p> <p><b>4 Reactive Inkjet Printing as a Tool for in situ Synthesis of Self-Assembled Nanoparticles 69<br /> </b><i>Ghassan Jabbour, Mutalifu Abulikamu, Hyung W. Choi, and Hanna Haverinen</i></p> <p>4.1 Introduction to Reactive Inkjet Printing 69</p> <p>4.2 RIJ of Self-Assembled Au NPs 70</p> <p>4.3 Parameters Influencing the Growth of Au NPs 74</p> <p>4.4 Simplifying the Approach (Single Cartridge) Using Single Cartridge Step 77</p> <p>4.5 Further Progress toward Reduction of Fabrication Time (1 min) 77</p> <p>4.6 Conclusion 79</p> <p>References 79</p> <p><b>5 3D Printing via Multiphoton Polymerization 83<br /> </b><i>Maria Farsari</i></p> <p>5.1 Multiphoton Polymerization 84</p> <p>5.2 The Diffraction Limit 85</p> <p>5.3 Experimental Setup 86</p> <p>5.4 Materials for MPP 88</p> <p>5.4.1 Introduction 88</p> <p>5.4.2 Photoinitiators 88</p> <p>5.4.3 Organic Photopolymers 89</p> <p>5.4.4 Su- 8 90</p> <p>5.4.5 Hybrid Materials 90</p> <p>5.4.6 Applications 91</p> <p>5.4.6.1 Metamaterials 91</p> <p>5.4.6.2 Biomedical Applications 94</p> <p>5.5 Conclusions 96</p> <p>References 96</p> <p><b>6 High Speed Sintering: The Next Generation of Manufacturing 107<br /> </b><i>Adam Ellis</i></p> <p>6.1 The Need for the Next Generation of Additive Manufacturing 107</p> <p>6.2 High Speed Sintering 109</p> <p>6.3 Machine Setup & Parameter Control 109</p> <p>6.4 Materials & Properties 112</p> <p>6.5 HSS for High-Volume Manufacturing 113</p> <p>6.6 Case Study: From Elite to High Street 115</p> <p>6.7 Opening the Supply Chain 115</p> <p>6.8 The Future of HSS and the Benefits of Inkjet 116</p> <p>References 116</p> <p><b>7 Metallic Nanoinks for Inkjet Printing of Conductive 2D and 3D Structures 119<br /> </b><i>Alexander Kamyshny and Shlomo Magdassi</i></p> <p>7.1 Introduction 119</p> <p>7.2 Metallic Nanoinks: Requirements and Challenges 120</p> <p>7.3 Synthesis and Stabilization of Metal NPs for Conductive Nanoinks 121</p> <p>7.3.1 Synthesis 121</p> <p>7.3.2 Stabilization 122</p> <p>7.3.2.1 Stabilization Against Aggregation 122</p> <p>7.3.2.2 Stabilization Against Oxidation 124</p> <p>7.4 Formulation of Conductive Metallic Nanoinks 125</p> <p>7.5 Formation of 2D Conductive Structures: Printing and Sintering 127</p> <p>7.6 3D Printing of Conductive Patterns: Formation and Sintering 134</p> <p>7.7 Applications of Metallic Inkjet Nanoinks in Printed Electronics 135</p> <p>7.7.1 RFID Tags 136</p> <p>7.7.2 Thin-Film Transistors 136</p> <p>7.7.3 Electroluminescent Devices and Light-Emitting Diodes 136</p> <p>7.7.4 Transparent Conductive Electrodes 137</p> <p>7.7.5 Organic Solar Cells 138</p> <p>7.8 Outlook 139</p> <p>References 140</p> <p><b>8 Graphene- and 2D Material-Based Thin-Film Printing 161<br /> </b><i>Jiantong Li, Max C. Lemme, and Mikael Östling</i></p> <p>8.1 Introduction 161</p> <p>8.2 Printing Procedures 162</p> <p>8.2.1 Ink Formulations 162</p> <p>8.2.2 Jetting and Patterns 166</p> <p>8.2.3 Drying 166</p> <p>8.2.4 Posttreatments 171</p> <p>8.3 Performance and Applications 172</p> <p>8.3.1 Transparent Conductors 173</p> <p>8.3.2 Micro-Supercapacitors 173</p> <p>8.3.3 Photodetectors 174</p> <p>8.3.4 Solar Cells 176</p> <p>8.4 Discussion and Outlook 177</p> <p>Acknowledgments 178</p> <p>References 178</p> <p><b>9 Inkjet Printing of Photonic Crystals 183<br /> </b><i>Minxuan Kuang and Yanlin Song</i></p> <p>9.1 Introduction 183</p> <p>9.2 Inkjet Printing of Photonic Crystals 184</p> <p>9.2.1 Process of Inkjet Printing 184</p> <p>9.2.2 Inkjet Printing of Fine Controlled PC Dots and Lines 186</p> <p>9.2.2.1 Influence of the Ink Formulation 186</p> <p>9.2.2.2 Influence of Substrate Wettability 188</p> <p>9.2.2.3 Suppression of “Coffee-Ring” Effect 193</p> <p>9.3 Application of Printing of Photonic Crystals 196</p> <p>9.3.1 Photonic Crystal Patterns 196</p> <p>9.3.2 Printing Patterned Microcolloidal Crystals with Controllable 3D Morphology 199</p> <p>9.3.3 Inkjet-Printed PCs Applied in Vapor Sensors 201</p> <p>9.3.4 Inkjet-Printed PCs Applied in Chemical Detection 201</p> <p>9.4 Outlook 203</p> <p>References 204</p> <p><b>10 Printable Semiconducting/Dielectric Materials for Printed Electronics 213<br /> </b><i>Sunho Jeong and Jooho Moon</i></p> <p>10.1 Introduction 213</p> <p>10.2 Printable Materials for Semiconductors 213</p> <p>10.3 Printable Materials for Dielectrics 219</p> <p>10.4 Conclusions 223</p> <p>References 224</p> <p><b>11 Low Melting Point Metal or Its Nanocomponents as Functional 3D Printing Inks 229<br /> </b><i>Lei Wang and Jing Liu</i></p> <p>11.1 Introduction of Metal 3D Printing 229</p> <p>11.2 Low Melting Point Metal Ink 230</p> <p>11.2.1 Liquid Metal Printing Ink 230</p> <p>11.2.2 Nanoliquid Metal 232</p> <p>11.3 Liquid-Phase 3D Printing 234</p> <p>11.3.1 Fabrication Scheme 234</p> <p>11.3.2 Forming Principle of Metal Objects in Cooling Liquid 235</p> <p>11.3.3 Liquid-Phase Printing of Metal Structures 236</p> <p>11.3.4 Factors Affecting the Printing Quality 237</p> <p>11.3.5 Comparison Between Liquid-Phase Cooling and Gas-Phase Cooling 238</p> <p>11.3.6 Vision of the Future Liquid-Phase Printing 240</p> <p>Acknowledgment 241</p> <p>References 241</p> <p><b>12 Inkjet Printing of Conducting Polymer Nanomaterials 245<br /> </b><i>Edward Song and Jin-Woo Choi</i></p> <p>12.1 Introduction 245</p> <p>12.2 Inkjet Printing of Polyaniline Nanomaterials 246</p> <p>12.2.1 Introduction 246</p> <p>12.2.2 Chemical Structure, Electrochemical Properties, and Conductivity of Polyaniline 246</p> <p>12.2.3 Inkjet-Printed Polyaniline Nanomaterials 249</p> <p>12.2.4 Applications of Inkjet-Printed Polyaniline Nanomaterials 250</p> <p>12.3 Polypyrrole 251</p> <p>12.3.1 Properties and Synthesis of Polypyrrole (Ppy) Nanomaterials 251</p> <p>12.3.2 Inkjet Printing and Applications of Ppy Nanomaterials 254</p> <p>12.4 Polythiophene (Pth) and Poly(3,4-Ethylenedioxythiophene) (pedot) 258</p> <p>12.4.1 Properties and Synthesis of Pth and PEDOT Nanomaterials 258</p> <p>12.4.2 Inkjet Printing and Applications of Pth Nanomaterials 258</p> <p>12.5 Conclusions and Future Outlook 258</p> <p>References 260</p> <p><b>13 Application of Printed Silver Nanowires Based on Laser-Induced Forward Transfer 265<br /> </b><i>Teppei Araki, Rajesh Mandamparambil, Jinting Jiu, Tsuyoshi Sekitani, and Katsuaki Suganuma</i></p> <p>13.1 Introduction 265</p> <p>13.2 Ag NW Transparent Electrodes 266</p> <p>13.2.1 Background 266</p> <p>13.2.2 Transparent Electrodes Formed from Ultra-Long Ag NWs 267</p> <p>13.3 Printed Ag NW Electrodes 269</p> <p>13.3.1 Fabrication and Properties of Stretchable Electrodes 269</p> <p>13.3.2 Ag NWs Printing by LIFT 269</p> <p>13.4 Summary 271</p> <p>References 271</p> <p><b>14 Inkjet Printing of Functional Polymers into Carbon Fiber Composites 275<br /> </b><i>Patrick J. Smith, Elliot J. Fleet, and Yi Zhang</i></p> <p>14.1 Inkjet Printing 275</p> <p>14.2 Carbon Fiber Composites 276</p> <p>14.3 Mechanical Tests 276</p> <p>14.4 Printing and Sample Preparation 277</p> <p>14.5 Carbon Fiber Composites that Contain Inkjet-Printed Patterns Composed of PMMA Microdroplets 278</p> <p>14.6 Carbon Fiber Composites that Contain Inkjet-Printed Patterns Composed of PMMA and PEG Microdroplets 283</p> <p>14.7 Morphology of the Printed PMMA and PEG Droplets 284</p> <p>14.8 Printed Polymers for Intrinsic Repair of Composites 286</p> <p>14.9 Conclusions 288</p> <p>Acknowledgments 289</p> <p>References 289</p> <p><b>15 Inkjet-Printable Nanomaterials and Nanocomposites for Sensor Fabrication 293<br /> </b><i>Niamh T. Brannelly and Anthony J. Killard</i></p> <p>15.1 Introduction 293</p> <p>15.2 Metallic Inks 294</p> <p>15.2.1 Gold 294</p> <p>15.2.2 Silver 296</p> <p>15.2.3 Copper, Nickel, and Alumina 296</p> <p>15.2.4 Metal Oxides 297</p> <p>15.3 Conductive Polymers 298</p> <p>15.3.1 Polyaniline 299</p> <p>15.3.2 Polypyrrole 300</p> <p>15.3.3 Prussian Blue 301</p> <p>15.3.4 Pedot 302</p> <p>15.4 Carbon Nanomaterials 302</p> <p>15.4.1 Graphene Oxide 302</p> <p>15.4.2 Carbon Nanotubes 304</p> <p>15.5 Future Outlooks and Conclusions 308</p> <p>References 308</p> <p><b>16 Electrochromics for Printed Displays and Smart Windows 317<br /> </b><i>Pooi See Lee, Guofa Cai, Alice L.-S. Eh, and Peter Darmawan</i></p> <p>16.1 Overview on Electrochromics 317</p> <p>16.1.1 Electrochromics for Green Buildings 318</p> <p>16.1.2 Electrochromics for Displays 320</p> <p>16.1.2.1 Solution Processing of Electrochromics 322</p> <p>16.1.2.2 Printing Techniques in Electrochromics 324</p> <p>16.2 Screen Printing 324</p> <p>16.3 Inkjet Printing 326</p> <p>16.4 Flexographic Printing 329</p> <p>16.5 Roll-to-Roll Printing 329</p> <p>16.6 Other Printing Methods 329</p> <p>16.7 Conclusions and Perspectives 330</p> <p>References 332</p> <p>Index 341</p>
Shlomo Magdassi is a professor of applied chemistry at the Casali Center for Applied Chemistry, Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, Israel.<br> His research focuses on formation, formulation and applications of micro and nanoparticles. These particles are used in delivery systems such as in cosmetics and pharmaceutics, and in inks, such as glass inks, conductive inks, 3D and 4D printing.<br> Prof. Magdassi has authored more than 200 publications, 25 book chapters and he is the scientific editor of 4 books. In addition to his scientific publications, he also has over 60 inventions on applications of colloids in industrial products, which led to some industrial activities such as worldwide sales and establishing new companies.<br> <br> Alexander Kamyshny is a senior researcher of applied chemistry at the Casali Center for Applied Chemistry, Institute of Chemistry at the Hebrew University of Jerusalem, Israel.<br> His research focuses on colloid science, in particular on formation, stabilization and application of nanomaterials, especially metal nanoparticles and their utilization for conductive ink formulations and conductive coatings.<br> Dr. Kamyshny has authored 80 publications, 9 book chapters and 11 patents. He is a member of editorial board of Scientific Reports and of various international scientific societies. In addition to the fundamental research, he performed a number of industrial R&D projects.<br> <br>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €