Details

Electrodeposition from Ionic Liquids


Electrodeposition from Ionic Liquids


2. Aufl.

von: Frank Endres, Andrew Abbott, Douglas R. MacFarlane

160,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 17.02.2017
ISBN/EAN: 9783527682737
Sprache: englisch
Anzahl Seiten: 486

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Edited by distinguished experts in this expanding field and with specialist contributions, this overview is the first of its kind to focus on electrodeposition from ionic liquids. <br> This second edition has been completely revised and updated with approximately 20% new content and has been expanded by five chapters to cover the following topics:<br> -Bulk and Interface Theory<br> -Nanoscale Imaging including AFM, In situ STM and UHV-STM<br> -Impedance Spectroscopy<br> -Process Scale-up including Brighteners<br> -Speciation and Redox Properties.<br> The result is essential reading for electrochemists, materials scientists, chemists in industry, physical chemists, chemical engineers, inorganic and organic chemists.
<p>List of Contributors xvii</p> <p>Abbreviations xxi</p> <p><b>1 Why Use Ionic Liquids for Electrodeposition? 1</b><br /><i>Andrew P. Abbott, Frank Endres, and Douglas R. Macfarlane</i></p> <p>1.1 Nonaqueous Solutions 2</p> <p>1.2 Ionic Fluids 3</p> <p>1.3 What Is an Ionic Liquid? 4</p> <p>1.4 Technological Potential of Ionic Liquids 6</p> <p>1.5 Conclusions 11</p> <p>References 12</p> <p><b>2 Synthesis of Ionic Liquids 17</b><br /><i>Tom Beyersdorff, Thomas J. S. Schubert, UrsWelz-Biermann,Will Pitner, Andrew P. Abbott, Katy J. McKenzie, and Karl S. Ryder</i></p> <p>2.1 Nanostructured Metals and Alloys Deposited from Ionic Liquids 17<br /><i>Thomas J. S. Schubert</i></p> <p>References 24</p> <p>2.2 Air- andWater-Stable Ionic Liquids 26<br /><i>Thomas J. S. Schubert</i></p> <p>References 35</p> <p>2.3 Eutectic-Based Ionic Liquids 38<br /><i>Andrew P. Abbott</i></p> <p>References 50</p> <p><b>3 Physical Properties of Ionic Liquids for Electrochemical Applications 55</b><br /><i>Hiroyuki Ohno</i></p> <p>3.1 Introduction 55</p> <p>3.2 Thermal Properties 55</p> <p>3.3 Viscosity 62</p> <p>3.4 Density 64</p> <p>3.5 Refractive Index 65</p> <p>3.6 Polarity 67</p> <p>3.7 Solubility of Metal Salts 73</p> <p>3.8 Electrochemical Properties 76</p> <p>3.9 Conclusion and Future Prospects 86</p> <p>Acknowledgments 86</p> <p>References 86</p> <p><b>4 Electrodeposition of Metals 95<br /></b><br />4.1 Electrodeposition in AlCl3-Based Ionic Liquids 95<br /><i>Thomas Schubert</i></p> <p>References 103</p> <p>4.2 Electrodeposition of Refractory Metals from Ionic Liquids 104<br /><i>Giridhar Pulletikurthi, Natalia Borisenko, and Frank Endres</i></p> <p>References 115</p> <p>4.3 Deposition of Metals from Nonchloroaluminate Eutectic Mixtures 119<br /><i>Andrew P. Abbott and Karl S. Ryder</i></p> <p>References 131</p> <p>4.4 Troublesome Aspects 132<br /><i>Andrew P. Abbott and Frank Endres</i></p> <p>References 137</p> <p>4.5 Complexation and Redox Behavior ofMetal Ions in Ionic Liquids 137</p> <p>References 151</p> <p><b>5 Electrodeposition of Alloys 157</b><br /><i>I-Wen Sun and Po-Yu Chen</i></p> <p>5.1 Introduction 157</p> <p>5.2 Electrodeposition of Al-Containing Alloys from Chloroaluminate Ionic Liquids 160</p> <p>5.3 Electrodeposition of Zn-Containing Alloys from Chlorozincate Ionic Liquids 167</p> <p>5.4 Fabrication of a Porous Metal Surface by Electrochemical Alloying and Dealloying 170</p> <p>5.5 Nb–Sn 171</p> <p>5.6 Air- andWater-Stable Ionic Liquids 171</p> <p>5.7 Deep Eutectic Solvents 178</p> <p>5.8 Summary 182</p> <p>References 183</p> <p><b>6 Electrodeposition of Semiconductors from Ionic Liquids 187</b><br /><i>Natalia Borisenko, Abhishek Lahiri, and Frank Endres</i></p> <p>6.1 Introduction 187</p> <p>6.2 Group IV Semiconductors 188</p> <p>6.3 II–VI Compound Semiconductors 196</p> <p>6.4 III–V Compound Semiconductors 198</p> <p>6.5 Other Compound Semiconductors 201</p> <p>6.6 Conclusions 202</p> <p>References 204</p> <p><b>7 Conducting Polymers 211</b><br /><i>JenniferM. Pringle</i></p> <p>7.1 Introduction 211</p> <p>7.2 Electropolymerization – General Experimental Procedures 214</p> <p>7.3 Synthesis of Conducting Polymers in Chloroaluminate ILs 219</p> <p>7.4 Synthesis of Conducting Polymers in Air- andWater-Stable ILs 221</p> <p>7.5 Characterization 235</p> <p>7.6 Conclusions and Outlook 244</p> <p>References 245</p> <p><b>8 Nanostructured Materials 253</b><br /><br />8.1 Nanostructured Metals and Alloys Deposited from Ionic Liquids 253<br /><i>Rolf Hempelmann and Harald Natter</i></p> <p>Acknowledgments 273</p> <p>References 274</p> <p>8.2 Electrodeposition of Ordered Macroporous Materials from Ionic Liquids 278<br /><i>Yao Li and Jiupeng Zhao</i></p> <p>References 288</p> <p>8.3 Electrodeposition of Nanowires from Ionic Liquids 289<br /><i>I-Wen Sun and Po-Yu Chen</i></p> <p>Acknowledgment 302</p> <p>References 303</p> <p>8.4 Electrochemical Synthesis of Nanowire Electrodes for Lithium Batteries 304<br /><i>Sherif Zein El Abedin</i></p> <p>Acknowledgments 317</p> <p>References 317</p> <p><b>9 Ionic Liquid–Solid Interfaces 321</b><br /><i>Hua Li, Timo Carstens, Aaron Elbourne, Natalia Borisenko, René Gustus, Frank Endres, and Rob Atkin</i></p> <p>9.1 Introduction 321</p> <p>9.2 IL–Au(111) Interface 322</p> <p>9.3 IL–HOPG Interface 327</p> <p>9.4 Influence of Solutes on the IL–Electrode Interfacial Structure 332</p> <p>9.5 Thin Films of Ionic Liquids in Ultrahigh Vacuum (UHV) 335</p> <p>9.6 Outlook 339</p> <p>References 339</p> <p><b>10 Plasma Electrochemistry with Ionic Liquids 345</b><br /><i>Jürgen Janek, Marcus Rohnke, Manuel Pölleth, and Sebastian A.Meiss</i></p> <p>10.1 Introduction 345</p> <p>10.2 Concepts and Principles 346</p> <p>10.3 Early Studies 351</p> <p>10.4 The Stability of Ionic Liquids in Plasma Experiments 355</p> <p>10.5 Plasma Electrochemical Metal Deposition in Ionic Liquids 359</p> <p>10.6 Conclusions and Outlook 367</p> <p>Acknowledgments 368</p> <p>References 368</p> <p><b>11 Impedance Spectroscopy on Electrode | Ionic Liquid Interfaces 373</b><br /><i>Jens Wallauer, Marco Balabajew, and Bernhard Roling</i></p> <p>11.1 Introduction 373</p> <p>11.2 Measurement: Basics and Pitfalls 378</p> <p>11.3 Analysis of Experimental Data 381</p> <p>11.4 Application: IL Interfaces at Metal Electrodes 387</p> <p>References 395</p> <p><b>12 Technical Aspects 401</b></p> <p>12.1 Metal Dissolution Processes 401<br /><i>Andrew P. Abbott,Wrya Karim, and Karl S. Ryder</i></p> <p>References 408</p> <p>12.2 Reference Electrodes for Use in Room-Temperature Ionic Liquids 408<br /><i>Douglas R. MacFarlane</i></p> <p>References 422</p> <p>12.3 Process Scale-Up 424<br /><i>Andrew P. Abbott</i></p> <p>References 436</p> <p>12.4 Toward Regeneration and Reuse of Ionic Liquids in Electroplating 438<br /><i>Daniel Watercamp and Jorg Thöming</i></p> <p>Acknowledgments 453</p> <p>References 453</p> <p>12.5 Impurities 457<br /><i>Andrew P. Abbott, Frank Endres and Douglas MacFarlane</i></p> <p>A.1 Protocol for the Deposition of Zinc from a Type III Ionic Liquid 467</p> <p>A.1.1 Preparation of Ionic Liquids 467</p> <p>A.2 Electroplating Experiment 467</p> <p>A.2.1 Method 467</p> <p>A.2.2 Safety Precautions 468</p> <p>References 468</p> <p><b>13 Plating Protocols 469</b><br /><i>Frank Endres, Sherif Zein El Abedin, Douglas R.MacFarlane, Karl S. Ryder, and Andrew P. Abbott</i></p> <p>13.1 Electrodeposition of Al from [C2mim]Cl/AlCl3 469</p> <p>13.2 Electrodeposition of Al from 1-Butyl-3-methylimidazoliumchloride–AlCl3–Toluene 472</p> <p>13.3 Electrodeposition of Al from [C2mim] NTf2/AlCl3 473</p> <p>13.4 Electrodeposition of Al from [C4mpyr]NTf2/AlCl3 476</p> <p>13.5 Electrodeposition of Li from [C4mpyr]NTf2/LiNTf2 477</p> <p>13.6 Electrodeposition of Ta from [C4mpyr]NTf2 479</p> <p>13.7 Electrodeposition of Zinc Coatings from a Choline Chloride: Ethylene-Glycol-Based Deep Eutectic Solvent 480</p> <p>13.8 Electrodeposition of Nickel Coatings from a Choline Chloride: Ethylene-Glycol-Based Deep Eutectic Solvent 481</p> <p>References 482</p> <p><b>14 Future Directions and Challenges 483</b><br /><i>Frank Endres, Andrew P. Abbott, and Douglas MacFarlane</i></p> <p>14.1 Impurities 483</p> <p>14.2 Counter Electrodes/Compartments 485</p> <p>14.3 Ionic Liquids for Reactive (Nano)materials 486</p> <p>14.4 Nanomaterials/Nanoparticles 486</p> <p>14.5 Cation/Anion Effects 487</p> <p>14.6 Polymers for Batteries and Solar Cells 487</p> <p>14.7 Variable-Temperature Studies 488</p> <p>14.8 Intrinsic Process Safety 488</p> <p>14.9 Economics (Price, Recycling) 489</p> <p>14.10 Fundamental Knowledge Gaps 490</p> <p>Index 491</p>
Frank Endres studied chemistry and physics at Saarland University, Germany, gaining his doctorate in 1996. He obtained his lecturing qualification at Karlsruhe University in 2002, since when he has been a full professor at Clausthal University of Technology.<br> <br> Andrew Abbott gained his PhD in electrochemistry from Southampton University in 1989. Following post-doctoral studies at the universities of Connecticut and Liverpool, he became a lecturer at the University of Leicester in 1993, and Professor of Physical Chemistry there in 2005. Since 1999, Professor Abbott has been Research Director of Scionix Ltd.<br> <br> Professor Doug MacFarlane leads the Monash Ionic Liquids Group at Monash University. He is currently the holder of an Australian Research Council Laureate Fellowship. He is also the Program Leader of the Energy Program in the Australian Centre of Excellence for Electromaterials Science. His group focuses on a range of aspects of ionic liquids and their application in the energy sciences and sustainable chemistry. Professor MacFarlane was a BSc(Hons) graduate of Victoria University of Wellington, New Zealand and then undertook his graduate work in the Angell group at Purdue University, Indiana, graduating in 1983. After postdoctoral fellowships in France and New Zealand he took up an academic position at Monash. He has been a Professor of Chemistry at Monash since 1995 and was Head of School 2003-2006.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
59,95 €