Details

Experimental Electrochemistry


Experimental Electrochemistry

A Laboratory Textbook
2. Aufl.

von: Rudolf Holze

41,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.10.2019
ISBN/EAN: 9783527676293
Sprache: englisch
Anzahl Seiten: 288

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Showing how to apply the theoretical knowledge in practice, the one and only compilation of electrochemical experiments on the market now in a new edition.<br> Maintaining its didactic approach, this successful textbook provides clear and easy-to-follow instructions for carrying out the experiments, illustrating the most important principles and applications in modern electrochemistry, while pointing out the potential dangers and risks involved.<br> This second edition contains 84 experiments, many of which cover electrochemical energy conversion and storage as well as electrochemical equilibrium.
<p>Preface to the Second Edition ix</p> <p>Preface to the First Edition xi</p> <p>Foreword to the Second Edition xv</p> <p>Symbols and Acronyms xvii</p> <p><b>1 Introduction: An Overview of Practical Electrochemistry </b><b>1</b></p> <p>Practical Hints 2</p> <p>Electrodes 3</p> <p>Measuring Instruments 6</p> <p>Electrochemical Cells 7</p> <p>Data Recording 9</p> <p><b>2 Electrochemistry in Equilibrium </b><b>11</b></p> <p>Experiment 2.1: The Electrochemical Series 11</p> <p>Experiment 2.2: Standard Electrode Potentials and the Mean Activity Coefficient 15</p> <p>Experiment 2.3: pH Measurements and Potentiometrically Indicated Titrations 20</p> <p>Experiment 2.4: Redox Titrations (Cerimetry) 25</p> <p>Experiment 2.5: Differential Potentiometric Titration 27</p> <p>Experiment 2.6: Potentiometric Measurement of the Kinetics of the Oxidation of Oxalic Acid 30</p> <p>Experiment 2.7: Polarization and Decomposition Voltage 34</p> <p>Experiment 2.8: A Simple Relative Hydrogen Electrode 39</p> <p><b>3 Electrochemistry with Flowing Current </b><b>43</b></p> <p>Experiment 3.1: Ion Movement in an Electric Field 44</p> <p>Experiment 3.2: Paper Electrophoresis 46</p> <p>Experiment 3.3: Charge Transport in Electrolyte Solution 47</p> <p>Experiment 3.4: Conductance Titration 51</p> <p>Experiment 3.5: Chemical Constitution and Electrolytic Conductance 54</p> <p>Experiment 3.6: Faraday’s Law 56</p> <p>Experiment 3.7: Kinetics of Ester Saponification 58</p> <p>Experiment 3.8: Movement of Ions and Hittorf Transport Number 62</p> <p>Experiment 3.9: Polarographic Investigation of the Electroreduction of Formaldehyde 68</p> <p>Experiment 3.10: Galvanostatic Measurement of Stationary Current–Potential Curves 72</p> <p>Experiment 3.11: Cyclic Voltammetry 75</p> <p>Experiment 3.12: Slow Scan Cyclic Voltammetry 82</p> <p>Experiment 3.13: Kinetic Investigations with Cyclic Voltammetry 86</p> <p>Experiment 3.14: Numerical Simulation of Cyclic Voltammograms 90</p> <p>Experiment 3.15: Cyclic Voltammetry with Microelectrodes 92</p> <p>Experiment 3.16: Cyclic Voltammetry of Organic Molecules 96</p> <p>Experiment 3.17: Cyclic Voltammetry in Nonaqueous Solutions 102</p> <p>Experiment 3.18: Cyclic Voltammetry with Sequential Electrode Processes 104</p> <p>Experiment 3.19: Cyclic Voltammetry of Aromatic Hydrocarbons 107</p> <p>Experiment 3.20: Cyclic Voltammetry of Aniline and Polyaniline 110</p> <p>Experiment 3.21: Galvanostatic Step Measurements 115</p> <p>Experiment 3.22: Cyclic Voltammetry of a Supercapacitor Electrode 118</p> <p>Experiment 3.23: Chronoamperometry 121</p> <p>Experiment 3.24: Chronocoulometry 122</p> <p>Experiment 3.25: Rotating Disk Electrode 124</p> <p>Experiment 3.26: Rotating Ring-Disk Electrode 130</p> <p>Experiment 3.27: Measurement of Electrode Impedances 133</p> <p>Experiment 3.28: Corrosion Cells 136</p> <p>Experiment 3.29: Aeration Cell 138</p> <p>Experiment 3.30: Concentration Cell 139</p> <p>Experiment 3.31: Salt Water Drop Experiment According to Evans 141</p> <p>Experiment 3.32: Passivation and Activation of an Iron Surface 142</p> <p>Experiment 3.33: Cyclic Voltammetry with Corroding Electrodes 143</p> <p>Experiment 3.34: Tafel Plot of a Corroding Electrode 145</p> <p>Experiment 3.35: Impedance of a Corroding Electrode 148</p> <p>Experiment 3.36: Linear Polarization Resistance of a Corroding Electrode 150</p> <p>Experiment 3.37: Oscillating Reactions 152</p> <p><b>4 Analytical Electrochemistry </b><b>155</b></p> <p>Experiment 4.1: Ion-Sensitive Electrode 156</p> <p>Experiment 4.2: Potentiometrically Indicated Titrations 158</p> <p>Experiment 4.3: Bipotentiometrically Indicated Titration 163</p> <p>Experiment 4.4: Conductometrically Indicated Titration 165</p> <p>Experiment 4.5: Electrogravimetry 167</p> <p>Experiment 4.6: Coulometric Titration 170</p> <p>Experiment 4.7: Amperometry 172</p> <p>Experiment 4.8: Polarography (Fundamentals) 178</p> <p>Experiment 4.9: Polarography (Advanced Methods) 182</p> <p>Experiment 4.10: Anodic Stripping Voltammetry 183</p> <p>Experiment 4.11: Abrasive Stripping Voltammetry 186</p> <p>Experiment 4.12: Polarographic Analysis of Anions 189</p> <p>Experiment 4.13: Tensammetry 191</p> <p><b>5 Nontraditional Electrochemistry </b><b>197</b></p> <p>Experiment 5.1: UV-Vis Spectroscopy 197</p> <p>Experiment 5.2: Surface-Enhanced Raman Spectroscopy 200</p> <p>Experiment 5.3: Surface-Enhanced Raman Spectroscopy of a</p> <p>Self-Assembled Monolayer 203</p> <p>Experiment 5.4: Infrared Spectroelectrochemistry 205</p> <p>Experiment 5.5: Electrochromism 207</p> <p>Experiment 5.6: Raman Spectroscopic Monitoring of Charge/Discharge of an Intrinsically Conducting Polyaniline Supercapacitor Electrode Material 209</p> <p><b>6 Electrochemical Energy Conversion and Storage </b><b>211</b></p> <p>Experiment 6.1: Lead–Acid Accumulator 211</p> <p>Experiment 6.2: Discharge Behavior of Nickel–Cadmium Accumulators 216</p> <p>Experiment 6.3: Performance Data of a Fuel Cell 218</p> <p>Experiment 6.4: Charging Supercapacitors 221</p> <p>Experiment 6.5: Discharging Supercapacitors 224</p> <p>Experiment 6.6: Zinc–Air Cell 227</p> <p>Experiment 6.7: Lithium-Ion Battery 228</p> <p>Experiment 6.8: Low-Temperature Discharge Behavior of Nickel–Cadmium Accumulators 230</p> <p>Experiment 6.9: Discharge Behavior of Nickel–Cadmium Accumulators at Constant Load 233</p> <p>Experiment 6.10: Impedance of a Button Cell 234</p> <p>Experiment 6.11: Potentiostatic Polarization Curves 236</p> <p>Experiment 6.12: Galvanostatic Polarization Curves 237</p> <p><b>7 Electrochemical Production </b><b>241</b></p> <p>Experiment 7.1: Cementation Reaction 241</p> <p>Experiment 7.2: Galvanic Copper Deposition 242</p> <p>Experiment 7.3: Electrochemical Oxidation of Aluminum 244</p> <p>Experiment 7.4: Kolbe Electrolysis of Acetic Acid 245</p> <p>Experiment 7.5: Electrolysis of Acetyl Acetone 247</p> <p>Experiment 7.6: Anodic Oxidation of Malonic Acid Diethylester 250</p> <p>Experiment 7.7: Indirect Anodic Dimerization of Acetoacetic Ester (3-Oxo-Butyric Acid Ethyl Ester) 251</p> <p>Experiment 7.8: Electrochemical Bromination of Acetone 253</p> <p>Experiment 7.9: Electrochemical Iodination of Ethanol 255</p> <p>Experiment 7.10: Electrochemical Production of Potassium Peroxodisulfate 257</p> <p>Experiment 7.11: Yield of Chlor-Alkali Electrolysis According to the Diaphragm Process 258</p> <p>Appendix 261</p> <p>Index 263</p>
Rudolf Holze is Full Professor of Physical Chemistry and Electrochemistry at the Institute of Chemistry at Chemnitz University of Technology. He finished his studies of chemistry at Bonn University with a diploma thesis on new cathode materials for lithium batteries. His doctoral thesis focused on impedance measurements at porous electrodes for energy conversion systems. As a postdoctoral fellow with E.B. Yeager at Case Western Reserve University, Cleveland, Ohio, USA, he studied transition metal complexes as electrocatalysts for fuel cells. Research interests include spectroelectrochemistry, electrochemical materials science (intrinsically conducting polymers, corrosion, functionalized electrode surfaces) and corrosion. He has published several books and more than 280 research papers and reviews. In editorial boards of various journals and as editor he is actively involved in scientific communication, including the organization of conferences and workshops.

Diese Produkte könnten Sie auch interessieren:

Fundamentals of Electrochemical Deposition
Fundamentals of Electrochemical Deposition
von: Milan Paunovic, Mordechay Schlesinger
PDF ebook
141,99 €
The Quantum in Chemistry
The Quantum in Chemistry
von: Roger Grinter
PDF ebook
45,99 €
Physical Chemistry
Physical Chemistry
von: Paul M. S. Monk
PDF ebook
47,99 €