Details

Polymer Composites, Biocomposites


Polymer Composites, Biocomposites


Polymer Composites Volume 3

von: Sabu Thomas, Kuruvilla Joseph, S. K. Malhotra, Koichi Goda, M. S. Sreekala

192,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 10.10.2013
ISBN/EAN: 9783527674251
Sprache: englisch
Anzahl Seiten: 608

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles.</p> <p><br />This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites.</p> <p>The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications.</p> <p>Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.</p>
<p>The Editors XIX</p> <p>List of Contributors XXI</p> <p><b>1 Advances in Polymer Composites: Biocomposites –State of the Art, New Challenges, and Opportunities 1</b><br /> <i>Koichi Goda, Meyyarappallil Sadasivan Sreekala, Sant Kumar Malhotra, Kuruvilla Joseph, and Sabu Thomas</i></p> <p>1.1 Introduction 1</p> <p>1.2 Development of Biocomposite Engineering 3</p> <p>1.3 Classification of Biocomposites 5</p> <p>References 8</p> <p><b>2 Synthesis, Structure, and Properties of Biopolymers (Natural and Synthetic) 11</b><br /> <i>Raju Francis, Soumya Sasikumar, and Geethy P. Gopalan</i></p> <p>2.1 Introduction 11</p> <p>2.2 Classification 13</p> <p>2.3 Natural Biopolymers 13</p> <p>2.3.1 Proteins 14</p> <p>2.3.2 Polysaccharides 27</p> <p>2.3.3 Polysaccharides from Marine Sources 34</p> <p>2.3.4 Low Molecular Weight Biopolymers 39</p> <p>2.3.5 Microbial Synthesized Biopolymers 42</p> <p>2.3.6 Natural Poly(Amino Acids) 46</p> <p>2.3.7 Nucleic Acids 50</p> <p>2.4 Synthetic Biopolymers 54</p> <p>2.4.1 Poly(Glycolide) PGA or Poly(Glycolic Acid) 55</p> <p>2.4.2 Poly(Lactic Acid) (PLA) 55</p> <p>2.4.3 Poly(Lactide-co-Glycolide) 56</p> <p>2.4.4 Polycaprolactone (PCL) 57</p> <p>2.4.5 Poly(p-Dioxanone) (PDO) 57</p> <p>2.4.6 Poly(Trimethylene Carbonate) (PTMC) 58</p> <p>2.4.7 Poly-β-Hydroxybutyrate (PHB) 58</p> <p>2.4.8 Poly(Glycerol Sebacic Acid) (PGS) 58</p> <p>2.4.9 Poly(Propylene Fumarate) (PPF) 59</p> <p>2.4.10 Poly(Anhydrides) (PAs) 60</p> <p>2.4.11 Poly(Orthoesters) (POEs) 60</p> <p>2.4.12 Poly(Phosphazene) 61</p> <p>2.4.13 Poly(Vinyl Alcohol) (PVA) 62</p> <p>2.4.14 Poly(Hydroxyalkanoates) (PHAs) 63</p> <p>2.4.15 Poly(Ester Amides) (PEAs) 63</p> <p>2.5 Need for Biopolymers 64</p> <p>2.6 Exceptional Properties of Biopolymers 65</p> <p>2.7 Biomedical Polymers 65</p> <p>2.7.1 Chitosan 66</p> <p>2.7.2 Poly(Lactic Acid) (PLA) 67</p> <p>2.7.3 Collagen 67</p> <p>2.7.4 Polycaprolactone (PCL) 68</p> <p>2.7.5 Poly(2-Hydroxyethyl Methacrylate) (PHEMA) 68</p> <p>2.7.6 Carbohydrate-Based Vaccines 69</p> <p>2.7.7 Chitin 69</p> <p>2.7.8 Albumin 69</p> <p>2.7.9 Fibrin 70</p> <p>2.7.10 Hyaluronic Acid (HA) 70</p> <p>2.7.11 Chondroitin Sulfate (CS) 70</p> <p>2.7.12 Alginic Acid 70</p> <p>2.7.13 Poly(Anhydrides) 70</p> <p>2.8 Composite Material 71</p> <p>2.9 Blends 71</p> <p>2.10 Applications of Biopolymers 72</p> <p>2.10.1 Medical Applications 72</p> <p>2.10.2 Agricultural Applications 76</p> <p>2.10.3 Packaging 77</p> <p>2.11 Partially Biodegradable Packaging Materials 80</p> <p>2.12 Nonbiodegradable Biopolymers 80</p> <p>2.12.1 Poly(Thioesters) 80</p> <p>2.12.1.1 Poly(3-Mercaptopropionate) (Poly(3MP)) 81</p> <p>2.13 Conversion of Nonbiodegradable to Biodegradable Polymers 82</p> <p>2.14 Current Research Areas in Biopolymers and Bioplastics 82</p> <p>2.15 General Findings and Future Prospects 83</p> <p>Acknowledgments 83</p> <p>Abbreviations 84</p> <p>References 84</p> <p><b>3 Preparation, Microstructure, and Properties of Biofibers 109</b><br /> <i>Takashi Nishino</i></p> <p>3.1 Introduction 109</p> <p>3.2 Structure of Natural Plant Fibers 110</p> <p>3.2.1 Microstructure 110</p> <p>3.2.2 Crystal Structure 114</p> <p>3.3 Ultimate Properties of Natural Fibers 117</p> <p>3.3.1 Elastic Modulus 117</p> <p>3.3.2 Tensile Strength 120</p> <p>3.4 Mechanical and Thermal Properties of Cellulose Microfibrils and Macrofibrils 121</p> <p>3.5 All-Cellulose Composites and Nanocomposites 126</p> <p>3.6 Conclusions 129</p> <p>References 129</p> <p><b>4 Surface Treatment and Characterization of Natural Fibers: Effects on the Properties of Biocomposites 133</b><br /> <i>Donghwan Cho, Hyun-Joong Kim, and Lawrence T. Drzal</i></p> <p>4.1 Introduction 133</p> <p>4.2 Why Is Surface Treatment of Natural Fibers Important in Biocomposites? 134</p> <p>4.3 What Are the Surface Treatment Methods of Natural Fibers? 137</p> <p>4.3.1 Chemical Treatment Methods 138</p> <p>4.3.2 Physical Treatment Methods 145</p> <p>4.4 How Does the Surface Treatment Influence the Properties of Biocomposites? 149</p> <p>4.4.1 Chemical Changes of Natural Fibers 149</p> <p>4.4.2 Morphological and Structural Changes of Natural Fibers 150</p> <p>4.4.3 Mechanical Changes of Natural Fibers 151</p> <p>4.4.4 Interfacial Properties of Biocomposites 153</p> <p>4.4.5 Mechanical Properties of Biocomposites 157</p> <p>4.4.6 Impact Properties of Biocomposites 160</p> <p>4.4.7 Dynamic Mechanical Properties of Biocomposites 161</p> <p>4.4.8 Thermal Properties of Biocomposites 164</p> <p>4.4.9 Water Absorption Behavior of Biocomposites 166</p> <p>4.5 Concluding Remarks 168</p> <p>References 169</p> <p><b>5 Manufacturing and Processing Methods of Biocomposites 179</b></p> <p>5.1 Processing Technology of Natural Fiber-Reinforced Thermoplastic Composite 179<br /> <i>Tatsuya Tanaka</i></p> <p>5.1.1 Background 179</p> <p>5.1.2 NF- Reinforced PLA Resin Composite Material 181</p> <p>5.1.3 Pellet Production Technology of Continuation Fiber-Reinforced Thermoplastic Resin Composite Material 181</p> <p>5.1.4 Pellet Manufacturing Technology of the Continuous Natural Fiber–Reinforced Thermoplastic Resin Composite Material 183</p> <p>5.1.5 Pellet Manufacturing Technology of the Distributed Type Natural Fiber–Reinforced Thermoplastic Resin Composites 189</p> <p>5.1.6 Future Outlook 197</p> <p>5.2 Processing Technology of Wood Plastic Composite (WPC) 197<br /> Hirokazu Ito</p> <p>5.2.1 Raw Materials 198</p> <p>5.2.2 Compounding Process 203</p> <p>5.2.3 Molding Process 207</p> <p>5.2.4 The Future Outlook for WPC in Industry 209</p> <p>References 209</p> <p><b>6 Biofiber-Reinforced Thermoset Composites 213</b><br /> <i>Masatoshi Kubouchi, Terence P. Tumolva, and Yoshinobu Shimamura</i></p> <p>6.1 Introduction 213</p> <p>6.2 Materials and Fabrication Techniques 213</p> <p>6.2.1 Thermosetting Resins 213</p> <p>6.2.2 Natural Fibers 215</p> <p>6.2.3 Fabrication Techniques 217</p> <p>6.3 Biofiber-Reinforced Synthetic Thermoset Composites 220</p> <p>6.3.1 Polyester-Based Composites 220</p> <p>6.3.2 Epoxy-Based Composites 222</p> <p>6.3.3 Vinyl Ester-Based Composites 223</p> <p>6.3.4 Phenolic Resin-Based Composites 224</p> <p>6.3.5 Other Thermoset-Based Composites 225</p> <p>6.4 Biofiber-Reinforced Biosynthetic Thermoset Composites 225</p> <p>6.4.1 Lignin-Based Composites 225</p> <p>6.4.2 Protein-Based Composites 226</p> <p>6.4.3 Tannin-Based Composites 227</p> <p>6.4.4 Triglyceride-Based Composites 228</p> <p>6.4.5 Other Thermoset-Based Composites 229</p> <p>6.5 End-of-Life Treatment of NFR Thermoset Composites 231</p> <p>6.5.1 Recycling as Composite Fillers 231</p> <p>6.5.2 Pyrolysis 232</p> <p>6.5.3 Chemical Recycling 232</p> <p>6.5.4 Energy Recovery 233</p> <p>6.6 Conclusions 233</p> <p>References 234</p> <p><b>7 Biofiber-Reinforced Thermoplastic Composites 239</b><br /> <i>Susheel Kalia, Balbir Singh Kaith, Inderjeet Kaur, and James Njuguna</i></p> <p>7.1 Introduction 239</p> <p>7.2 Source of Biofibers 240</p> <p>7.3 Types of Biofibers 241</p> <p>7.3.1 Annual Biofibers 241</p> <p>7.3.2 Perennial Biofibers (Wood Fibers) 245</p> <p>7.4 Advantages of Biofibers 248</p> <p>7.5 Disadvantages of Biofibers 248</p> <p>7.6 Graft Copolymerization of Biofibers 250</p> <p>7.7 Surface Modifications of Biofibers Using Bacterial Cellulose 252</p> <p>7.8 Applications of Biofibers as Reinforcement 255</p> <p>7.8.1 Composite Boards 256</p> <p>7.8.2 Biofiber-Reinforced Thermoplastic Composites 259</p> <p>7.9 Biofiber Graft Copolymers Reinforced Thermoplastic Composites 271</p> <p>7.10 Bacterial Cellulose and Bacterial Cellulose-Coated, Biofiber-Reinforced, Thermoplastic Composites 274</p> <p>7.11 Applications of Biofiber-Reinforced Thermoplastic Composites 277</p> <p>7.12 Conclusions 278</p> <p>References 279</p> <p><b>8 Biofiber-Reinforced Natural Rubber Composites 289</b><br /> <i>Parambath Madhom Sreekumar, Preetha Gopalakrishnan, and Jean Marc Saiter</i></p> <p>8.1 Introduction 289</p> <p>8.2 Natural Rubber (NR) 289</p> <p>8.3 Biofibers 290</p> <p>8.4 Processing 292</p> <p>8.5 Biofiber-Reinforced Rubber Composites 292</p> <p>8.5.1 Cure Characteristics 293</p> <p>8.5.2 Mechanical Properties 294</p> <p>8.5.3 Viscoelastic Properties 300</p> <p>8.5.4 Diffusion and Swelling Properties 302</p> <p>8.5.5 Dielectric Properties 304</p> <p>8.5.6 Rheological and Aging Characteristics 305</p> <p>8.6 Approaches to Improve Fiber–Matrix Adhesion 307</p> <p>8.6.1 Mercerization 307</p> <p>8.6.2 Benzoylation 308</p> <p>8.6.3 Coupling Agents 308</p> <p>8.6.4 Bonding Agents 309</p> <p>8.7 Applications 312</p> <p>8.8 Conclusions 312</p> <p>References 312</p> <p><b>9 Improvement of Interfacial Adhesion in Bamboo Polymer Composite Enhanced with Microfibrillated Cellulose 317</b><br /> <i>Kazuya Okubo and Toru Fujii</i></p> <p>9.1 Introduction 317</p> <p>9.2 Materials 318</p> <p>9.2.1 Matrix 318</p> <p>9.2.2 Bamboo Fibers 318</p> <p>9.2.3 Microfibrillated cellulose (MFC) 319</p> <p>9.3 Experiments 320</p> <p>9.3.1 Fabrication Procedure of Developed Composite Using PLA, BF, and MFC (PLA/BF/MFC Composite) 320</p> <p>9.3.2 Three-Point Bending Test 321</p> <p>9.3.3 Microdrop Test 321</p> <p>9.3.4 Fracture Toughness Test 321</p> <p>9.3.5 Bamboo Fiber Embedded Test 322</p> <p>9.4 Results and Discussion 322</p> <p>9.4.1 Internal State of PLA/BF/MFC Composite 322</p> <p>9.4.2 Bending Strength of PLA/BF/MFC Composite 322</p> <p>9.4.3 Fracture Toughness of PLA/BF/MFC Composite 325</p> <p>9.4.4 Crack Propagation Behavior 325</p> <p>9.5 Conclusion 328</p> <p>Acknowledgments 328</p> <p>References 328</p> <p><b>10 Textile Biocomposites 331</b></p> <p>10.1 Elastic Properties of Twisted Yarn Biocomposites 331<br /> <i>Koichi Goda and Rie Nakamura</i></p> <p>10.1.1 Introduction 331</p> <p>10.1.2 Classical Theories of Yarn Elastic Modulus 332</p> <p>10.1.3 Orthotropic Theory for Twisted Yarn-Reinforced Composites 335</p> <p>10.1.4 Conclusion 344</p> <p>10.2 Fabrication Process for Textile Biocomposites 345<br /> <i>Asami Nakai and Louis Laberge Lebel</i></p> <p>10.2.1 Introduction 345</p> <p>10.2.2 Intermediate Materials for Continuous Natural Fiber-Reinforced Thermoplastic Composites 345</p> <p>10.2.3 Braid-Trusion of Jute/Polylactic Acid Composites 349</p> <p>10.2.4 Conclusion 358</p> <p>References 358</p> <p><b>11 Bionanocomposites 361</b><br /> <i>Eliton S. Medeiros, Amélia S.F. Santos, Alain Dufresne, William J. Orts, and Luiz H. C. Mattoso</i></p> <p>11.1 Introduction 361</p> <p>11.2 Bionanocomposites 362</p> <p>11.2.1 Bionanocomposite Classification 362</p> <p>11.2.2 Reinforcements Used in Bionanocomposites 364</p> <p>11.2.3 Matrices for Bionanocomposites 369</p> <p>11.2.4 Mixing, Processing, and Characterization of Bionanocomposites 380</p> <p>11.2.5 Polysaccharide Bionanocomposites 383</p> <p>11.2.6 Protein Bionanocomposites 391</p> <p>11.2.7 Bionanocomposites Using Biodegradable Polymers from Microorganisms and Biotechnology 399</p> <p>11.2.8 Bionanocomposites Using Biodegradable Polymers from Petrochemical Products 406</p> <p>11.2.9 Other Biodegradable Polymers 416</p> <p>11.3 Final Remarks 419</p> <p>References 420</p> <p><b>12 Fully Biodegradable ‘‘Green’’ Composites 431</b><br /> <i>Rie Nakamura and Anil N. Netravali</i></p> <p>12.1 Introduction 431</p> <p>12.2 Soy Protein-Based Green Composites 434</p> <p>12.2.1 Introduction 434</p> <p>12.2.2 Fiber/Soy Protein Interfacial Properties 435</p> <p>12.2.3 Effect of Soy Protein Modification on the Properties of Resins and Composites 437</p> <p>12.3 Starch-Based Green Composites 441</p> <p>12.3.1 Introduction 441</p> <p>12.3.2 Fiber Treatments 442</p> <p>12.3.3 Cellulose Nanofiber-Reinforced ‘‘Green’’ Composites 446</p> <p>12.3.4 Evaluation of Mechanical Properties of Green Composites 447</p> <p>12.4 Biodegradation of ‘‘Green’’ Composites 450</p> <p>12.4.1 Biodegradation of PHBV 451</p> <p>12.4.2 Effect of Soy Protein Modification on Its Biodegradation 455</p> <p>12.4.3 Biodegradation of Starch-Based Green Composites 458</p> <p>References 460</p> <p><b>13 Applications and Future Scope of ‘‘Green’’ Composites 465</b><br /> <i>Hyun-Joong Kim, Hyun-Ji Lee, Taek-Jun Chung, Hyeok-Jin Kwon, Donghwan Cho, and William Tai Yin Tze</i></p> <p>13.1 Introduction 465</p> <p>13.1.1 Biodegradable Plastics versus Traditional Plastics 466</p> <p>13.2 Applications of Biocomposites (Products/Applications/Market) 467</p> <p>13.2.1 Survey of Technical Applications of Natural Fiber Composites 467</p> <p>13.2.2 Automotive Applications 469</p> <p>13.2.3 Structural Applications 472</p> <p>13.3 Future Scope 476</p> <p>13.3.1 Choice of Materials and Processing Methods 477</p> <p>13.4 Conclusion 478</p> <p>References 479</p> <p><b>14 Biomedical Polymer Composites and Applications 483</b><br /> <i>Dionysis E. Mouzakis</i></p> <p>14.1 Introduction 483</p> <p>14.2 Biocompatibility Issues 485</p> <p>14.3 Natural Matrix Based Polymer Composites 488</p> <p>14.3.1 Silk Biocomposites 488</p> <p>14.3.2 Chitin and Chitosan as Matrices 489</p> <p>14.3.3 Mammal Protein-Based Biocomposites 490</p> <p>14.3.4 Hyaluronic Acid Composites 491</p> <p>14.3.5 Other Natural Polymer Matrices 493</p> <p>14.4 Synthetic Polymer Matrix Biomedical Composites 494</p> <p>14.4.1 Biodegradable Polymer Matrices 495</p> <p>14.4.2 Synthetic Polymer Composites 499</p> <p>14.5 Smart Polymers and Biocomposites 502</p> <p>14.6 Polymer-Nanosystems and Nanocomposites in Medicine 504</p> <p>14.7 Conclusions 506</p> <p>14.8 Outlook 507</p> <p>References 507</p> <p><b>15 Environmental Effects, Biodegradation, and Life Cycle Analysis of Fully Biodegradable ‘‘Green’’ Composites 515</b><br /> <i>Ajalesh Balachandran Nair, Palanisamy Sivasubramanian, Preetha Balakrishnan, Kurungattu Arjunan Nair Ajith Kumar, and Meyyarappallil Sadasivan Sreekala</i></p> <p>15.1 Introduction 515</p> <p>15.2 Environmental Aspects 518</p> <p>15.3 Environmental Impacts of Green Composite Materials 520</p> <p>15.4 Choice of Impact Categories 521</p> <p>15.4.1 Global Warming 521</p> <p>15.4.2 Acidification 521</p> <p>15.4.3 Abiotic Depletion 521</p> <p>15.5 Environmental Impact of Polylactide 522</p> <p>15.6 Environmental Effect of Polyvinyl Alcohol (PVA) 523</p> <p>15.7 Potential Positive Environmental Impacts 526</p> <p>15.7.1 Composting 526</p> <p>15.7.2 Landfill Degradation 526</p> <p>15.7.3 Energy Use 526</p> <p>15.8 Potential Negative Environmental Impacts 526</p> <p>15.8.1 Pollution of Aquatic Environments 527</p> <p>15.8.2 Litter 528</p> <p>15.9 Biodegradation 529</p> <p>15.9.1 Biodegradability Test 530</p> <p>15.10 Advantages of Green Composites over Traditional Composites 532</p> <p>15.11 Disadvantages of Green Composites 532</p> <p>15.12 Application and End-Uses 532</p> <p>15.12.1 Automobiles 533</p> <p>15.12.2 Aircrafts and Ships 533</p> <p>15.12.3 Mobile Phones 533</p> <p>15.12.4 Decorative Purposes 534</p> <p>15.12.5 Uses 534</p> <p>15.13 Biodegradation of Polyvinyl Alcohol (PVA) under Different Environmental Conditions 534</p> <p>15.13.1 Biodegradation of Polyvinyl Alcohol under Composting Conditions 535</p> <p>15.13.2 Biodegradation of Polyvinyl Alcohol in Soil Environment 535</p> <p>15.13.3 Anaerobic Biodegradation of Polyvinyl Alcohol in Aqueous Environments 536</p> <p>15.14 Biodegradation of Polylactic Acid 536</p> <p>15.15 Biodegradation of Polylactic Acid and Its Composites 537</p> <p>15.16 Biodegradation of Cellulose 539</p> <p>15.17 Cellulose Fiber-Reinforced Starch Biocomposites 539</p> <p>15.18 Life Cycle Assessment (LCA) 541</p> <p>15.18.1 Methods 542</p> <p>15.18.2 Green Design Metrics 543</p> <p>15.18.3 Decision Matrix 545</p> <p>15.19 Life Cycle Assessment Results 546</p> <p>15.20 Green Principles Assessment Results 548</p> <p>15.21 Comparison 548</p> <p>15.22 Life Cycle Inventory Analysis of Green Composites 551</p> <p>15.22.1 Fiber Composites 551</p> <p>15.22.2 Natural Fibers 552</p> <p>15.22.3 Life Cycle Analysis of Polylactide (PLA) 552</p> <p>15.23 Life Cycle Analysis of Poly(hydroxybutyrate) 556</p> <p>15.24 Life Cycle Analysis of Cellulose Fibers 556</p> <p>15.25 Conclusions 558</p> <p>Abbreviations 559</p> <p>References 561</p> <p>Index 569</p>
<b>Sabu Thomas</b> is a Professor of Polymer Science and Engineering at Mahatma Gandhi University (India). He is a Fellow of the Royal Society of Chemistry and a Fellow of the New York Academy of Sciences. Thomas has published over 300 papers in peer reviewed journals on his polymer composite, membrane separation, polymer blend and alloy, and polymer recycling research and has edited three books.<br /><br /><b>Kuruvilla Joseph</b> is a Reader at St. Berchmans' College (India). He has held a number of visiting research fellowships and has published ca. 50 papers on polymer composites and blends.<br /><br /><b>S. K. Malhotra</b> is Chief Design Engineer and Head of the Composites Technology Centre at the Indian Institute of Technology, Madras. He has published over 100 journal and proceedings papers on polymer and alumina-zirconia composites.<br /><br /><b>Koichi Goda</b> is a Professor of Mechanical Engineering at Yamaguchi University. His major scientific fields of interest are reliability and engineering analysis of composite materials and development and evaluation of environmentally friendly and other advanced composite materials.<br /><br /><b>M. S. Sreekala</b> is a Senior Research Associate in the Department of Polymer Science and Rubber Technology at Cochin University of Science and Technology (India). She has published over 30 papers on polymer composites (including biodegradable and green composites) in peer reviewed journals and has held a number of Research Fellowships, including those from the Humboldt Foundation and Japan Society for Promotion of Science.
Polymer composites are materials in which the matrix polymer is reinforced with organic/inorganic fillers of a definite size and shape, leading to enhanced performance of the resultant composite. These materials find a wide number of applications in such diverse fields as geotextiles, building, electronics, medical, packaging, and automobiles. <br /> This first systematic reference on the topic emphasizes the characteristics and dimension of this reinforcement. The authors are leading researchers in the field from academia, government, industry, as well as private research institutions across the globe, and adopt a practical approach here, covering such aspects as the preparation, characterization, properties and theory of polymer composites. <br /> The book begins by discussing the state of the art, new challenges, and opportunities of various polymer composite systems. Interfacial characterization of the composites is discussed in detail, as is the macro- and micromechanics of the composites. Structure-property relationships in various composite systems are explained with the help of theoretical models, while processing techniques for various macro- to nanocomposite systems and the influence of processing parameters on the properties of the composite are reviewed in detail. The characterization of microstructure, elastic, viscoelastic, static and dynamic mechanical, thermal, tribological, rheological, optical, electrical and barrier properties are highlighted, as well as their myriad applications. <br /> Divided into three volumes: Vol. 1. Macro- and Microcomposites; Vol. 2. Nanocomposites; and Vol. 3. Biocomposites.<br />

Diese Produkte könnten Sie auch interessieren:

Terpene
Terpene
von: Eberhard Breitmaier
PDF ebook
42,99 €
Reaktionen der organischen Chemie
Reaktionen der organischen Chemie
von: Helmut Krauch, Werner Kunz
PDF ebook
124,99 €
Sieben Moleküle
Sieben Moleküle
von: Jürgen-Hinrich Fuhrhop, Tianyu Wang
PDF ebook
25,99 €