Details

Micro and Nanostructured Epoxy / Rubber Blends


Micro and Nanostructured Epoxy / Rubber Blends


1. Aufl.

von: Sabu Thomas, Christophe Sinturel, Raju Thomas

160,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 04.09.2014
ISBN/EAN: 9783527666904
Sprache: englisch
Anzahl Seiten: 464

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Epoxy resins are polymers which are extensively used as coating materials due to their outstanding mechanical properties and good handling characteristics. A disadvantage results from their high cross-link density: they are brittle and have very low resistance to crack growth and propagation. This necessitates the toughening of the epoxy matrix without impairing its good thermomechanical properties. The final properties of the polymer depend on their structure. The book focuses on the microstructural aspects in the modification of epoxy resins with low molecular weight liquid rubbers, one of the prime toughening agents commonly employed. <br /><br />The book follows thoroughly the reactions of elastomer-modified epoxy resins from their liquid stage to the network formation. It gives an in-depth view into the cure reaction, phase separation and the simultaneous development of the morphology. Chapters on ageing, failure analysis and life cycle analysis round out the book.</p>
<p><b>Preface</b> <i>XV</i></p> <p><b>List of Contributors</b> <i>XVII</i></p> <p><b>1 Introduction</b> <i>1<br />Raju Thomas, Christophe Sinturel, Sabu Thomas, and Elham Mostafa Sadek El Akiaby</i></p> <p>1.1 Epoxy Resin – Introduction <i>1</i></p> <p>1.2 Cure Reactions <i>1</i></p> <p>1.3 Curing Agents <i>2</i></p> <p>1.3.1 Catalytic Cure <i>3</i></p> <p>1.3.2 Co-reactive Cure <i>3</i></p> <p>1.4 Different Curing Methods <i>7</i></p> <p>1.4.1 Thermal Curing <i>7</i></p> <p>1.4.2 Microwave Curing <i>8</i></p> <p>1.4.3 Radiation Curing <i>10</i></p> <p>1.5 Curing of Epoxy Resins: Structure–Property Relationship <i>12</i></p> <p>1.6 Toughening of Epoxy Resin <i>13</i></p> <p>1.6.1 Different Toughening Agents <i>13</i></p> <p>1.7 Rubber-Modified Epoxy Resin: Factors Influencing Toughening <i>16</i></p> <p>1.7.1 Concentration Effects <i>16</i></p> <p>1.7.2 Particle Size and Distribution of Rubber <i>16</i></p> <p>1.7.3 Effect of Temperature <i>17</i></p> <p>1.7.4 Effect of Rubber <i>17</i></p> <p>1.7.5 Interfacial Adhesion <i>18</i></p> <p>1.8 Toughening Mechanisms in Elastomer-Modified Epoxy Resins <i>18</i></p> <p>1.8.1 Particle Deformation <i>18</i></p> <p>1.8.2 Shear Yielding <i>19</i></p> <p>1.8.3 Crazing <i>20</i></p> <p>1.8.4 Simultaneous Shear Yielding and Crazing <i>21</i></p> <p>1.8.5 Crack Pinning <i>22</i></p> <p>1.8.6 Cavitation and Rumples <i>22</i></p> <p>1.9 Quantitative Assessment of Toughening Mechanisms <i>23</i></p> <p>1.10 Introduction of Chapters <i>24</i></p> <p>References <i>25</i></p> <p><b>2 Liquid Rubbers as Toughening Agents</b> <i>31<br />Hanieh Kargarzadeh, Ishak Ahmad, and Ibrahim Abdullah</i></p> <p>2.1 Introduction <i>31</i></p> <p>2.2 Toughening of Thermoset Resins <i>31</i></p> <p>2.3 Fracture Behavior of Rubber-Toughened Thermosets <i>32</i></p> <p>2.4 Natural Rubbers <i>35</i></p> <p>2.4.1 Preparation Method of LNR <i>36</i></p> <p>2.5 Liquid-Toughening Rubber in Thermoset Resins <i>43</i></p> <p>2.6 Concluding Remarks <i>49</i></p> <p>References <i>50</i></p> <p><b>3 Nanostructured Epoxy Composites</b> <i>53<br />Yuan Meng and Xinghong Zhang</i></p> <p>3.1 Introduction <i>53</i></p> <p>3.2 Preparation Methods of the Nanostructured Epoxy Thermoset <i>54</i></p> <p>3.3 Morphology of the Nanostructured Epoxy Thermoset <i>56</i></p> <p>3.3.1 Parameters Controlling the Morphologies <i>56</i></p> <p>3.4 Microphase Separation Mechanism <i>60</i></p> <p>3.4.1 Self-Assembly Mechanism <i>61</i></p> <p>3.4.2 Reaction-Induced Microphase Separation Mechanism <i>63</i></p> <p>3.5 Mechanical and Thermal Properties <i>65</i></p> <p>3.5.1 Fracture Toughness <i>65</i></p> <p>3.5.2 Glass Transition Temperature <i>67</i></p> <p>3.6 Conclusions and Outlooks <i>67</i></p> <p>References <i>68</i></p> <p><b>4 Manufacture of Epoxy Resin/Liquid Rubber Blends</b> <i>73<br />Sahrim Bin Hj Ahmad, Mimi Azlina Abu Bakar, Ying Yi, and Qi Qin</i></p> <p>4.1 Introduction <i>73</i></p> <p>4.2 Comparison of Hardeners <i>74</i></p> <p>4.3 Rubber-Toughened Epoxy Resins <i>77</i></p> <p>4.4 Cure Reaction Analysis <i>79</i></p> <p>4.5 Conclusions <i>79</i></p> <p>References <i>80</i></p> <p><b>5 Cure and Cure Kinetics of Epoxy-Rubber Systems</b> <i>83<br />Humberto Vázquez-Torres</i></p> <p>5.1 Introduction <i>83</i></p> <p>5.2 Cure Analysis <i>83</i></p> <p>5.3 Curing Kinetics <i>84</i></p> <p>5.3.1 Kinetics Analysis <i>85</i></p> <p>5.3.2 Autocatalytic Model <i>85</i></p> <p>5.3.3 Activation Energies <i>86</i></p> <p>5.4 Diffusion Factor <i>88</i></p> <p>5.5 Differential Scanning Calorimetry <i>88</i></p> <p>5.5.1 Dynamic DSC <i>89</i></p> <p>5.5.2 Isothermal DSC <i>90</i></p> <p>5.6 FTIR Spectroscopy <i>92</i></p> <p>5.7 Dielectric Spectroscopy Thermal Method <i>94</i></p> <p>5.8 Pressure–Volume–Temperature (PVT) Method <i>96</i></p> <p>5.9 Dynamic Mechanical Analysis (DMA) and Rheological Methods <i>97</i></p> <p>5.10 Conclusions <i>101</i></p> <p>Acknowledgments <i>101</i></p> <p>References <i>101</i></p> <p><b>6 Theoretical Modeling of the Curing Process</b> <i>105<br />Nicolas Boyard, Vincent Sobotka, and Didier Delaunay</i></p> <p>6.1 Introduction <i>105</i></p> <p>6.2 Modeling of the Curing Kinetics <i>106</i></p> <p>6.2.1 Mechanistic Approach <i>107</i></p> <p>6.2.2 Phenomenological Models Describing the Reaction <i>109</i></p> <p>6.2.3 Rheological Models <i>118</i></p> <p>6.2.4 Effect of Vitrification (<i>T</i><i>g</i> ) on the Reaction Rate <i>119</i></p> <p>6.3 Applications of the Empirical Models <i>120</i></p> <p>6.4 Conclusion <i>122</i></p> <p>References <i>123</i></p> <p><b>7 Phase-Separation Mechanism in Epoxy Resin/Rubber Blends</b> <i>127<br />Vattikuti Lakshmana Rao and Bejoy Francis</i></p> <p>7.1 Introduction <i>127</i></p> <p>7.2 Thermodynamics of Phase Separation <i>128</i></p> <p>7.2.1 Nucleation and Growth Mechanism <i>130</i></p> <p>7.2.2 Spinodal Decomposition <i>130</i></p> <p>7.3 Phase Separation in Uncured Epoxy Resin/Liquid Rubber Blends <i>131</i></p> <p>7.4 Phase-Separation Mechanism in Cured Blends <i>133</i></p> <p>7.5 Conclusion <i>144</i></p> <p>References <i>144</i></p> <p><b>8 Morphology Analysis by Microscopy Techniques and Light Scattering</b> <i>147<br />Daohong Zhang, Junheng Zhang, and Aiqing Zhang</i></p> <p>8.1 Introduction <i>147</i></p> <p>8.2 Developments of Morphology Analysis in Rubber-Modified Epoxies <i>147</i></p> <p>8.2.1 Optical Microscopy (OM) <i>148</i></p> <p>8.2.2 Scanning Electron Microscopy (SEM) <i>150</i></p> <p>8.2.3 Atomic Force Microscopy (AFM) <i>153</i></p> <p>8.2.4 Transmission Electron Microscopy (TEM) <i>155</i></p> <p>8.2.5 Small-Angle Light Scattering (SALS) <i>159</i></p> <p>8.3 Different Types of Morphologies <i>160</i></p> <p>8.3.1 Phase-Separation Morphology of Epoxy/Rubbers Blends <i>160</i></p> <p>8.3.2 Morphology of Hybrids <i>161</i></p> <p>8.3.3 Homogeneous Morphology <i>163</i></p> <p>8.4 Morphology of Toughening and Reinforcing Effects <i>165</i></p> <p>8.4.1 Conventional Additives <i>165</i></p> <p>8.4.2 Hyperbranched Polymers <i>167</i></p> <p>8.5 Conclusions <i>171</i></p> <p>Acknowledgments <i>172</i></p> <p>References <i>172</i></p> <p><b>9 Pressure–Volume–Temperature (PVT) Analysis</b> <i>179<br />Didier Delaunay, Nicolas Boyard, and Vincent Sobotka</i></p> <p>9.1 Introduction <i>179</i></p> <p>9.2 Generalities on the Behavior of the Polymers <i>180</i></p> <p>9.3 Measurement Techniques <i>184</i></p> <p>9.4 PvT Measures on Epoxies <i>187</i></p> <p>References <i>190</i></p> <p><b>10 Rheology of Rubber-Toughened Structural Epoxy Resin Systems</b> <i>193<br />Richard A. Pethrick</i></p> <p>10.1 Introduction <i>193</i></p> <p>10.2 Epoxy Resin Chemistry <i>194</i></p> <p>10.2.1 Basic Epoxy Chemical Reactions <i>195</i></p> <p>10.2.2 Kinetics of Cure <i>196</i></p> <p>10.2.3 Epoxy Reactivity <i>198</i></p> <p>10.3 Modeling of the Cure Process <i>198</i></p> <p>10.4 Rheological Implication of Differences in Reactivity <i>201</i></p> <p>10.4.1 Modeling Rheological Behavior <i>202</i></p> <p>10.4.2 Connection between Rheology and Cure <i>203</i></p> <p>10.5 Rheological Studies of Cure <i>206</i></p> <p>10.6 Toughened Epoxy Resins <i>209</i></p> <p>10.6.1 Carboxy-Terminated Butadiene Acrylonitrile (CTBN) <i>210</i></p> <p>10.6.2 Polyethersulfone (PES) <i>211</i></p> <p>10.6.3 Nano Clay Toughening of Epoxy Resins <i>213</i></p> <p>10.6.4 Toughening with Nano Carbon and Silica Nano Particles <i>213</i></p> <p>10.6.5 Plasticization <i>213</i></p> <p>10.7 Concluding Comments <i>214</i></p> <p>Acknowledgments <i>214</i></p> <p>References <i>214</i></p> <p><b>11 Viscoelastic Measurements and Properties of Rubber-Modified Epoxies</b> <i>219<br />Yingfeng Yu</i></p> <p>11.1 Introduction <i>219</i></p> <p>11.1.1 State Transitions from Liquid to Solid <i>220</i></p> <p>11.1.2 Viscoelasticity of Cured Materials <i>222</i></p> <p>11.2 Viscoelastic Behavior Below and Near Gel Point <i>224</i></p> <p>11.2.1 Liquid-Rubber-Modified Epoxies <i>224</i></p> <p>11.2.2 Core–Shell Rubber-Modified Epoxies <i>224</i></p> <p>11.2.3 Ternary Systems with Fillers <i>228</i></p> <p>11.3 Viscoelasticity of Cured Materials <i>228</i></p> <p>11.3.1 Dynamic Mechanical Study <i>228</i></p> <p>11.3.2 Dielectric Measurement <i>231</i></p> <p>11.4 Other Remarks <i>233</i></p> <p>11.5 Conclusion <i>234</i></p> <p>References <i>234</i></p> <p><b>12 Light, X-ray, and Neutron Scattering Techniques for Miscibility and Phase Behavior Studies in Polymer Blends</b> <i>239<br />Chikkakuntappa Ranganathaiah</i></p> <p>12.1 Introduction <i>239</i></p> <p>12.2 Brief Theoretical Considerations of Scattering <i>240</i></p> <p>12.3 Light Scattering Experiment <i>242</i></p> <p>12.4 X-ray Scattering <i>251</i></p> <p>12.5 Neutron Scattering <i>261</i></p> <p>12.5.1 Small-Angle Neutron Scattering (SANS) <i>261</i></p> <p>12.6 Conclusions and Future Outlook <i>267</i></p> <p>Acknowledgments <i>267</i></p> <p>References <i>267</i></p> <p><b>13 Mechanical Properties</b> <i>271<br />Shinu Koshy</i></p> <p>13.1 Introduction <i>271</i></p> <p>13.2 Morphology and Mechanical Properties of Rubber-Modified Epoxies <i>272</i></p> <p>13.2.1 Influence of Rubber Concentration <i>273</i></p> <p>13.2.2 Influence of Initial Cure Temperature <i>276</i></p> <p>13.2.3 Influence of Curing Agent <i>278</i></p> <p>13.2.4 Influence of Acrylonitrile Content <i>279</i></p> <p>13.2.5 Influence of Strain Rate <i>280</i></p> <p>13.2.6 Kerner Equation <i>281</i></p> <p>13.3 Fracture Toughness <i>281</i></p> <p>13.3.1 Effect of Concentration on Fracture Toughness <i>282</i></p> <p>13.3.2 Effect of Strain Rate on Fracture Toughness <i>284</i></p> <p>13.3.3 Effect of Curing Agent on Fracture Toughness <i>285</i></p> <p>13.4 Conclusion <i>285</i></p> <p>References <i>286</i></p> <p><b>14 Thermal Properties</b> <i>289<br />Vincent Sobotka, Didier Delaunay, Nicolas Boyard, Sabu Thomas, and Poornima Vijayan P.</i></p> <p>14.1 Specific Heat <i>289</i></p> <p>14.2 Thermal Conductivity <i>292</i></p> <p>14.2.1 Main Methods of Characterization <i>292</i></p> <p>14.2.2 Classical Model to Describe Thermal Conductivity as a Function of Temperature and Degree of Cure <i>296</i></p> <p>14.3 Thermogravimetric Analysis of Rubber/Epoxy Systems <i>297</i></p> <p>14.4 Kinetic Study from TGA <i>300</i></p> <p>References <i>301</i></p> <p><b>15 Dielectric Properties of Elastomeric Modified Epoxies</b> <i>305<br />Yerrapragada Venkata Lakshmi Ravi Kumar, Swayampakula Kalyani, and Nidamarthy Vasantha Kumar Dutt</i></p> <p>15.1 Introduction <i>305</i></p> <p>15.2 Dielectric Study in Rubber/Epoxy Systems <i>306</i></p> <p>15.2.1 Dielectric Constant () <i>306</i></p> <p>15.2.2 Volume Resistivity (VR) <i>308</i></p> <p>15.2.3 Conductivity () <i>310</i></p> <p>15.2.4 Combined Studies on Dielectric Constant, Volume Resistivity, and Conductivity <i>311</i></p> <p>15.3 Summary <i>312</i></p> <p>References <i>312</i></p> <p><b>16 Spectroscopy Analysis of Micro/Nanostructured Epoxy/Rubber Blends</b> <i>315<br />Xiaojiang Wang and Mark D. Soucek</i></p> <p>16.1 Introduction <i>315</i></p> <p>16.2 Fourier Transform Infrared (FTIR) and Raman Spectroscopy <i>316</i></p> <p>16.2.1 DGEBA Epoxy/Rubber Blends <i>316</i></p> <p>16.2.2 Other Epoxy/Rubber Blends <i>320</i></p> <p>16.2.3 FTIR Image and Raman Spectroscopy <i>322</i></p> <p>16.3 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) <i>323</i></p> <p>16.3.1 Acid-Terminated Rubber/DGEBA Epoxy Blends <i>323</i></p> <p>16.3.2 Hydroxyl-Terminated Rubber/DGEBA Epoxy Blends <i>326</i></p> <p>16.3.3 Neutral Rubber/DGEBA Epoxy Blends <i>329</i></p> <p>16.3.4 Other Type Epoxy/Rubber Blends <i>331</i></p> <p>16.4 Other Spectroscopy <i>333</i></p> <p>16.5 Summary <i>333</i></p> <p>Abbreviations <i>334</i></p> <p>References <i>334</i></p> <p><b>17 Applications</b> <i>339</i></p> <p>17.1 <b>Applications of Toughened Epoxy Resins</b> <i>339<br />Richard A. Pethrick</i></p> <p>17.1.1 Introduction <i>339</i></p> <p>17.1.2 Aerospace Adhesive Applications <i>339</i></p> <p>17.1.3 Rubber-Modified Resins <i>340</i></p> <p>17.1.4 Composites <i>341</i></p> <p>17.1.5 Epoxy Resin Modification <i>342</i></p> <p>17.1.6 Thermoplastic Modification <i>343</i></p> <p>17.1.7 Nanoparticle Modification <i>343</i></p> <p>17.1.8 Other Areas of Application <i>343</i></p> <p>17.2 <b>Thermoset-Based Materials for Optical Applications Containing Azobenzene Choromophores</b> <i>344<br />Luciana M. Sáiz, Antonela B. Orofino, María José Galante, and Patricia</i></p> <p><i>A. Oyanguren</i></p> <p>17.2.1 Introduction <i>344</i></p> <p>17.2.2 Synthesis and Optical Properties of Cross-linked Azo Polymers <i>345</i></p> <p>17.2.3 Photoaddressable Networks Containing Alkyl Compounds <i>354</i></p> <p>17.2.4 Conclusions <i>358</i></p> <p>References <i>360</i></p> <p><b>18 Comparison of Epoxy/Rubber Blends with Other Toughening Strategies: Thermoplastic and Hyperbranched Modifiers</b> <i>363<br />Gianluca Cicala</i></p> <p>18.1 Epoxy/Thermoplastic Blends: Development and Properties <i>363</i></p> <p>18.2 Epoxy/Hyperbranched Polymer Blends: Development and Properties <i>375</i></p> <p>18.3 Novel Toughening Approaches for Liquid Molding Technologies <i>378</i></p> <p>18.4 Rubbers as Tougheners: Comparison with Thermoplastics and Hyperbranched Modifiers <i>383</i></p> <p>18.5 Conclusions <i>387</i></p> <p>References <i>388</i></p> <p><b>19 Reliability Testing</b> <i>391<br />Marius Bâzu and Titu Bãjenescu</i></p> <p>19.1 Introduction <i>391</i></p> <p>19.2 Reliability Tests Used in Micro/Nanotechnologies <i>392</i></p> <p>19.3 Behavior in Real Applications and Aging Studies of Epoxy/Rubber Blends <i>394</i></p> <p>19.3.1 Epoxy/Rubber Blends Used in Packaging of Active Electronic Components <i>394</i></p> <p>19.3.2 Epoxy Matrix Used in Nanocomposites <i>399</i></p> <p>19.4 Conclusions <i>402</i></p> <p>References <i>402</i></p> <p><b>20 Failure Analysis</b> <i>405<br />Marius Bâzu and Titu Bãjenescu</i></p> <p>20.1 Introduction <i>405</i></p> <p>20.2 Methods for Failure Analysis of Epoxy/Rubber Blends <i>405</i></p> <p>20.3 Typical Failure Modes and Failure Mechanisms of Epoxy/Rubber Blends Used in Micro and Nanotechnologies <i>405</i></p> <p>20.3.1 Mechanical Damages <i>409</i></p> <p>20.3.2 Ion Contamination <i>414</i></p> <p>20.4 Self Healing <i>416</i></p> <p>20.5 Conclusions <i>417</i></p> <p>References <i>418</i></p> <p><b>21 Life Cycle Assessment (LCA) of Epoxy-Based Materials</b> <i>421<br />Jyotishkumar Parameswaranpillai and Dhanya Vijayan</i></p> <p>21.1 Introduction to Life Cycle Assessment (LCA) <i>421</i></p> <p>21.2 Significance of Life Cycle Assessment (LCA) <i>422</i></p> <p>21.2.1 Goal and Scope Definition <i>422</i></p> <p>21.2.2 Life Cycle Inventory Analysis <i>423</i></p> <p>21.2.3 Life Cycle Impact Assessment <i>423</i></p> <p>21.2.4 Life Cycle Result Interpretation <i>424</i></p> <p>21.3 Life Cycle Analysis of Epoxy Systems <i>424</i></p> <p>21.3.1 Life Cycle Analysis of Epoxy Resins Produced Based on Propylene and Glycerin <i>424</i></p> <p>21.3.2 Life Cycle Analysis of Epoxy Resin Containing Carbon Nanotubes <i>426</i></p> <p>21.3.3 Life Cycle Assessment of Wind Turbine Blade Materials <i>426</i></p> <p>21.3.4 Life Cycle Assessment in Automotive Application <i>428</i></p> <p>21.3.5 Life Cycle Assessment in Aerospace Application <i>429</i></p> <p>21.3.6 Life Cycle Assessment of a Novel Hybrid Glass-Hemp/Thermoset Composite <i>429</i></p> <p>21.3.7 Natural Fiber-Reinforced Epoxy Composites <i>430</i></p> <p>21.4 Conclusion <i>430</i></p> <p>References <i>431</i></p> <p><b>Index</b> <i>433</i></p>
Sabu Thomas is a Professor and Director of Polymer Science and Engineering at the School of Chemical Sciences, as well as the Director of<br> Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala, India. He received his Ph.D. in 1987 in Polymer Engineering from the Indian Institute of Technology (IIT), Kharagpur, India. He is a Fellow of the Royal Society of Chemistry. <br> Prof. Thomas has (co-)authored more than 600 research papers in international peer-reviewed journals in the area of polymer composites, nanocomposites, membrane separation, polymer blends and alloys, polymeric sca olds for tissue engineering and polymer recycling. Prof. Thomas has been involved in a number of books (35 books), both as author and editor. He has been ranked no. 5 in India with regard to the number of publications (listed in the panel of most productive scientists in the country). He received the coveted Sukumar Maithy Award for the best polymer researcher in the country for the year 2008. The h index of Prof. Thomas is 67 and he has more than 17,000 citations. Prof. Thomas has 4 patents to his credit. Recently he has been awarded CRSI and MRSI awards. Prof. Thomas has supervised 64 PhD theses and has delivered more than 200 invited /plenary and key note talks over 30 countries. <br> <br> Christophe Sinturel received his Masters degree in Organic Chemistry in 1994 and his Ph.D. in Polymer Science in 1998 from the University Blaise Pascal of Clermont-Ferrand (France). He spent one year at the University of Brighton (UK) in 1999 as Postdoctoral Research Associate before being appointed as an associate professor the same year at the University of Orleans (France). He accepted a full-professor position<br> at the University of Orleans in 2010. Christophe is currently conducting research in Orleans at the Centre de Recherche sur la Matiere Divisee,<br> a joint research institute of the Centre National de la Recherche Scienti que (CNRS) and the University of Orleans. <br> His current research interests concern polymer blends, nanostructured polymers, polymer nano-composites and block polymers.<br> He has published 40 publications in various international journals and books, 2 patents and participated in several international conferences.<br> <br> Raju Thomas is Vice Chancellor of Middle East University FZE, Ras Al Khaimah, UAE. He received his Ph.D. under the supervision of Prof. abu Thomas, Director of International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam,<br> Kerala, India.<br> His research works are re ected in his six published research articles in international journals and few articles which are under review status. Also many articles are published in popular journals. He has a wide teaching experience in Chemistry for more than 32 years in Graduate and Postgraduate levels.
<p>Epoxy resins are polymers which are extensively used as coating materials due to their outstanding mechanical properties and good handling characteristics. A disadvantage results from their high cross-link density: they are brittle and have very low resistance to crack growth and propagation. This necessitates the toughening of the epoxy matrix without impairing its good thermomechanical properties. The final properties of the polymer depend on their structure. The book focuses on the microstructural aspects in the modification of epoxy resins with low molecular weight liquid rubbers, one of the prime toughening agents commonly employed.</p> <p>The book follows thoroughly the reactions of elastomer-modified epoxy resins from their liquid stage to the network formation. It gives an in-depth view into the cure reaction, phase separation and the simultaneous development of the morphology. Chapters on ageing, failure analysis and life cycle analysis round out the book.</p>

Diese Produkte könnten Sie auch interessieren:

Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
PDF ebook
136,99 €
Hot-Melt Extrusion
Hot-Melt Extrusion
von: Dennis Douroumis
EPUB ebook
136,99 €
Kunststoffe
Kunststoffe
von: Wilhelm Keim
PDF ebook
99,99 €