Details

Biomimetic Approaches for Biomaterials Development


Biomimetic Approaches for Biomaterials Development


1. Aufl.

von: Joao F. Mano

171,99 €

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 08.02.2013
ISBN/EAN: 9783527652297
Sprache: englisch
Anzahl Seiten: 606

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Biomimetics, in general terms, aims at understanding biological principles and applying them for the development of man-made tools and technologies. This approach is particularly important for the purposeful design of passive as well as functional biomaterials that mimic physicochemical, mechanical and biological properties of natural materials, making them suitable, for example, for biomedical devices or as scaffolds for tissue regeneration.<br /><br />The book comprehensively covers biomimetic approaches to the development of biomaterials, including: an overview of naturally occurring or nature inspired biomaterials; an in-depth treatment of the surface aspects pivotal for the functionality; synthesis and self-assembly methods to prepare devices to be used in mineralized tissues such as bone and teeth; and preparation of biomaterials for the controlled/ sustained release of bioactive agents. The last part reviews the applications of bioinspired materials and principles of design in regenerative medicine such as in-situ grown bone or cartilage as well as the biomimetic techniques for soft tissue engineering.<br /><br />The comprehensive scope of this book makes it a must-have addition to the bookshelf of everyone in the fields of Materials Science/Engineering, Nanotechnologies / Nanosciences, Medical Sciences, Biochemistry, Polymer Chemistry, and Biomedical Engineering.
<p><b>Preface XVII List of Contributors XXI</b></p> <p><b>Part I Examples of Natural and Nature-Inspired Materials 1</b></p> <p>1 Biomaterials from Marine-Origin Biopolymers 3</p> <p><i>Tiago H. Silva, Ana R.C. Duarte, Joana Moreira-Silva, Joao F. Mano, and Rui L. Reis</i></p> <p>1.1 Taking Inspiration from the Sea 3</p> <p>1.2 Marine-Origin Biopolymers 6</p> <p>1.3 Marine-Based Tissue Engineering Approaches 12</p> <p>1.4 Conclusions 18</p> <p>2 Hydrogels from Protein Engineering 25</p> <p><i>Midori Greenwood-Goodwin and Sarah C. Heilshorn</i></p> <p>2.1 Introduction 25</p> <p>2.2 Principles of Protein Engineering 26</p> <p>2.3 Structural Diversity and Applications of Protein-Engineered Hydrogels 32</p> <p>2.4 Development of Biomimetic Protein-Engineered Hydrogels for Tissue Engineering Applications 39</p> <p>2.5 Conclusions and Future Perspective 48</p> <p>3 Collagen-Based Biomaterials for Regenerative Medicine 55</p> <p><i>Christophe Helary and Abhay Pandit</i></p> <p>3.1 Introduction 55</p> <p>3.2 Collagens In Vivo 56</p> <p>3.3 Collagen In Vitro 59</p> <p>3.4 Collagen Hydrogels 59</p> <p>3.5 Collagen Sponges 65</p> <p>3.6 Multichannel Collagen Scaffolds 66</p> <p>3.7 What Tissues Do Collagen Biomaterials Mimic? (see Table 3.1) 66</p> <p>3.8 Concluding Remarks 70</p> <p>4 Silk-Based Biomaterials 75</p> <p><i>Silvia Gomes, Isabel B. Leonor, Joao F. Mano, Rui L. Reis, and David L. Kaplan </i></p> <p>4.1 Introduction 75</p> <p>4.2 Silk Proteins 76</p> <p>4.3 Mechanical Properties 82</p> <p>4.4 Biomedical Applications of Silk 84</p> <p>4.5 Final Remarks 87</p> <p>5 Elastin-like Macromolecules 93</p> <p><i>Rui R. Costa, Laura Martin, Joao F. Mano, and Jose C. Rodríguez-Cabello</i></p> <p>5.1 General Introduction 93</p> <p>5.2 Materials Engineering – an Overview on Synthetic and Natural Biomaterials 94</p> <p>5.3 Elastin as a Source of Inspiration for Nature-Inspired Polymers 94</p> <p>5.4 Nature-Inspired Biosynthetic Elastins 99</p> <p>5.5 ELRs as Advanced Materials for Biomedical Applications 103</p> <p>5.6 Conclusions 110</p> <p>6 Biomimetic Molecular Recognition Elements for Chemical Sensing 117</p> <p><i>Justyn Jaworski</i></p> <p>6.1 Introduction 117</p> <p>6.2 Theory of Molecular Recognition 123</p> <p>6.3 Molecularly Imprinted Polymers 129</p> <p>6.4 Supramolecular Chemistry 134</p> <p>6.5 Biomolecular Materials 140</p> <p>6.6 Summary and Future of Biomimetic-Sensor-Coating Materials 151</p> <p><b>Part II Surface Aspects 157</b></p> <p>7 Biology Lessons for Engineering Surfaces for Controlling Cell–Material Adhesion 159</p> <p><i>Ted T. Lee and André’s J. García</i></p> <p>7.1 Introduction 159</p> <p>7.2 The Extracellular Matrix 159</p> <p>7.3 Protein Structure 160</p> <p>7.4 Basics of Protein Adsorption 161</p> <p>7.5 Kinetics of Protein Adsorption 162</p> <p>7.6 Cell Communication 164</p> <p>7.7 Cell Adhesion Background 166</p> <p>7.8 Integrins and Adhesive Force Generation Overview 167</p> <p>7.9 Adhesive Interactions in Cell, and Host Responses to Biomaterials 170</p> <p>7.10 Model Systems for Controlling Integrin-Mediated Cell Adhesion 170</p> <p>7.11 Self-Assembling Monolayers (SAMs) 171</p> <p>7.12 Real-World Materials for Medical Applications 172</p> <p>7.13 Bio-Inspired, Adhesive Materials: New Routes to Promote Tissue Repair and Regeneration 174</p> <p>7.14 Dynamic Biomaterials 176</p> <p>8 Fibronectin Fibrillogenesis at the Cell–Material Interface 189</p> <p><i>Marco Cantini, Patricia Rico, and Manuel Salmeron-Sanchez</i></p> <p>8.1 Introduction 189</p> <p>8.2 Cell-Driven Fibronectin Fibrillogenesis 189</p> <p>8.3 Cell-Free Assembly of Fibronectin Fibrils 195</p> <p>8.4 Material-Driven Fibronectin Fibrillogenesis 202</p> <p>9 Nanoscale Control of Cell Behavior on Biointerfaces 213</p> <p><i>E. Ada Cavalcanti-Adam and Dimitris Missirlis</i></p> <p>9.1 Nanoscale Cues in Cell Environment 213</p> <p>9.2 Biomimetics of Cell Environment Using Interfaces 216</p> <p>9.3 Cell Responses to Nanostructured Materials 227</p> <p>9.4 The Road Ahead 233 References 234</p> <p>10 Surfaces with Extreme Wettability Ranges for Biomedical Applications 237</p> <p><i>Wenlong Song, Natalia M. Alves, and Joao F. Mano</i></p> <p>10.1 Superhydrophobic Surfaces in Nature 237</p> <p>10.2 Theory of Surface Wettability 239</p> <p>10.3 Fabrication of Extreme Water-Repellent Surfaces Inspired by Nature 241</p> <p>10.4 Applications of Surfaces with Extreme Wettability Ranges in the Biomedical Field 245</p> <p>10.5 Conclusions 254</p> <p>11 Bio-Inspired Reversible Adhesives for Dry and Wet Conditions 259</p> <p><i>Aranzazu del Campo and Juan Pedro Fernandez-Blazquez</i></p> <p>11.1 Introduction 259</p> <p>11.2 Gecko-Like Dry Adhesives 260</p> <p>11.3 Bioinspired Adhesives for Wet Conditions 268</p> <p>11.4 The Future of Bio-Inspired Reversible Adhesives 270</p> <p>12 Lessons from Sea Organisms to Produce New Biomedical Adhesives 273</p> <p><i>Elise Hennebert, Pierre Becker, and Patrick Flammang </i></p> <p>12.1 Introduction 273</p> <p>12.2 Composition of Natural Adhesives 274</p> <p>12.3 Recombinant Adhesive Proteins 281</p> <p>12.4 Production of Bio-Inspired Synthetic Adhesive Polymers 284</p> <p>12.5 Perspectives 288</p> <p><b>Part III Hard and Mineralized Systems 293</b></p> <p>13 Interfacial Forces and Interfaces in Hard Biomaterial Mechanics 295</p> <p><i>Devendra K. Dubey and Vikas Tomar</i></p> <p>13.1 Introduction 295</p> <p>13.2 Hard Biological Materials 298</p> <p>13.4 Summary 308</p> <p>14 Nacre-Inspired Biomaterials 313</p> <p><i>Gisela M. Luz and Joao F. Mano</i></p> <p>14.1 Introduction 313</p> <p>14.2 Structure of Nacre 316</p> <p>14.3 Why Is Nacre So Strong? 318</p> <p>14.4 Strategies to Produce Nacre-Inspired Biomaterials 320</p> <p>14.5 Conclusions 328</p> <p>15 Surfaces Inducing Biomineralization 333</p> <p><i>Natalia M. Alves, Isabel B. Leonor, Helena S. Azevedo, Rui. L. Reis, and Joao. F. Mano</i></p> <p>15.1 Mineralized Structures in Nature: The Example of Bone 333</p> <p>15.2 Learning from Nature to the Research Laboratory 336</p> <p>15 Surfaces Inducing Biomineralization 333</p> <p><i>Natalia M. Alves, Isabel B. Leonor, Helena S. Azevedo, Rui. L. Reis, and Joao. F. Mano</i></p> <p>15.1 Mineralized Structures in Nature: The Example of Bone 333</p> <p>15.2 Learning from Nature to the Research Laboratory 336</p> <p>15.3 Smart Mineralizing Surfaces 343</p> <p>15.4 In Situ Self-Assembly on Implant Surfaces to Direct Mineralization 345</p> <p>15.5 Conclusions 348</p> <p>16 Bioactive Nanocomposites Containing Silicate Phases for Bone Replacement and Regeneration 353</p> <p><i>Melek Erol, Jasmin Hum, and Aldo R. Boccaccini</i></p> <p>16.1 Introduction 353</p> <p>16.2 Nanostructure and Nanofeatures of the Bone 354</p> <p>16.3 Nanocomposites-Containing Silicate Nanophases 356</p> <p>16.4 Final Considerations 372</p> <p><b>Part IV Systems for the Delivery of Bioactive Agents 381</b></p> <p>17 Biomimetic Nanostructured Apatitic Matrices for Drug Delivery 383</p> <p><i>Norberto Roveri and Michele Iafisco</i></p> <p>17.1 Introduction 383</p> <p>17.2 Biomimetic Apatite Nanocrystals 384</p> <p>17.3 Biomedical Applications of Biomimetic Nanostructured Apatites 390</p> <p>17.4 Biomimetic Nanostructured Apatite as Drug Delivery System 394</p> <p>17.5 Adsorption and Release of Proteins 402</p> <p>17.6 Conclusions and Perspectives</p> <p>18 Nanostructures and Nanostructured Networks for Smart Drug Delivery 417</p> <p><i>Carmen Alvarez-Lorenzo, Ana M. Puga, and Angel Concheiro</i></p> <p>18.1 Introduction 417</p> <p>18.2 Stimuli-Sensitive Materials 419</p> <p>18.3 Stimuli-Responsive Nanostructures and Nanostructured Networks 428</p> <p>18.4 Concluding Remarks 449</p> <p>19 Progress in Dendrimer-Based Nanocarriers 459</p> <p><i>Joaquim M. Oliveira, Joao F. Mano, and Rui L. Reis</i></p> <p>19.1 Fundamentals 459</p> <p>19.2 Applications of Dendrimer-Based Polymers 460</p> <p>19.3 Final Remarks 467</p> <p><b>Part V Lessons from Nature in Regenerative Medicine 471</b></p> <p>20 Tissue Analogs by the Assembly of Engineered Hydrogel Blocks 473</p> <p><i>Shilpa Sant, Daniela F. Coutinho, Nasser Sadr, Rui L. Reis, and Ali Khademhosseini</i></p> <p>20.1 Introduction 473</p> <p>20.2 Tissue/Organ Heterogeneity In Vivo 474</p> <p>20.3 Hydrogel Engineering for Obtaining Biologically Inspired Structures 477</p> <p>20.4 Assembly of Engineered Hydrogel Blocks 485</p> <p>20.5 Conclusions 488</p> <p>21 Injectable In-Situ-Forming Scaffolds for Tissue Engineering 495</p> <p><i>Da Yeon Kim, Jae Ho Kim, Byoung Hyun Min, and Moon Suk Kim</i></p> <p>21.1 Introduction 495</p> <p>21.2 Injectable In-Situ-Forming Scaffolds Formed by Electrostatic Interactions 496</p> <p>21.3 Injectable In-Situ-Forming Scaffolds Formed by Hydrophobic Interactions 497</p> <p>21.4 Immune Response of Injectable In-Situ-Forming Scaffolds 500</p> <p>21.5 Injectable In-Situ-Forming Scaffolds for Preclinical Regenerative Medicine 500</p> <p>21.6 Conclusions and Outlook 501</p> <p>22 Biomimetic Hydrogels for Regenerative Medicine 503</p> <p><i>Iris Mironi-Harpaz, Olga Kossover, Eran Ivanir, and Dror Seliktar</i></p> <p>22.1 Introduction 503 22.2 Natural and Synthetic Hydrogels 503</p> <p>22.3 Hydrogel Properties 505</p> <p>2.4 Engineering Strategies for Hydrogel Development 506</p> <p>22.5 Applications in Biomedicine 508</p> <p>23 Bio-inspired 3D Environments for Cartilage Engineering 515</p> <p><i>Jose Luis Gomez Ribelles</i></p> <p>23.1 Articular Cartilage Histology 515</p> <p>23.2 Spontaneous and Forced Regeneration in Articular Cartilage 517</p> <p>23.3 What Can Tissue Engineering Do for Articular Cartilage Regeneration? 517</p> <p>23.4 Cell Sources for Cartilage Engineering 519</p> <p>23.5 The Role and Requirements of the Scaffolding Material 524</p> <p>23.6 Growth Factor Delivery In Vivo 528</p> <p>23.7 Conclusions 528</p> <p>24 Soft Constructs for Skin Tissue Engineering 537</p> <p><i>Simone S. Silva, Joao F. Mano, and Rui L. Reis</i></p> <p>24.1 Introduction 537</p> <p>24.2 Structure of Skin 537</p> <p>24.3 Current Biomaterials in Wound Healing 539</p> <p>24.4 Wound Dressings and Their Properties 545</p> <p>24.5 Biomimetic Approaches in Skin Tissue Engineering 546</p> <p>24.6 Final Remarks 549</p> <p>Acknowledgments 552</p> <p>List of Abbreviations 552</p> <p>References 553</p> Index 559
Jo?o F. Mano (CEng, PhD, DSc) is an Associate Professor at the Polymer Engineering Department, University of Minho, Portugal, and principal investigator at the 3B's research group - Biomaterials, Biodegradables and Biomimetics. He is the former director of the Master's Program in Biomedical Engineering at the University of Minho. His current research interests include the development of new materials and concepts for biomedical applications, especially aimed at being used in tissue engineering and in drug delivery systems. In particular, he has been developing biomaterials and surfaces that can react to external stimuli, or biomimetic and nanotechnology approaches to be used in the biomedical area. J.F. Mano authored more than 330 papers in international journals and three patents. He belongs to the editorial boards of 5 well-established international journals. J.F. Mano awarded the 'Stimulus to Excellence' by the Portuguese Minister for Science and Technology in 2005, the 'Materials Science and Technology Prize', attributed by the Federation of European Materials Societies in 2007 and the major 'BES innovation award' in 2010.
Biomimetics, in general terms, aims at understanding biological principles and applying them for the development of man-made tools<br> and technologies. This approach is particularly important for the purposeful design of passive as well as functional biomaterials that mimic<br> physicochemical, mechanical and biological properties of natural materials, making them suitable, for example, for biomedical devices or<br> as scaffolds for tissue regeneration.<br> <br> The book comprehensively covers biomimetic approaches to the development of biomaterials, including: an overview of naturally occurring<br> or nature inspired biomaterials; an in-depth treatment of the surface aspects pivotal for the functionality; synthesis and self-assembly<br> methods to prepare devices to be used in mineralized tissues such as bone and teeth; and preparation of biomaterials for the controlled/<br> sustained release of bioactive agents. The last part reviews the applications of bioinspired materials and principles of design in regenerative<br> medicine such as in-situ grown bone or cartilage as well as the biomimetic techniques for soft tissue engineering.<br> <br> The comprehensive scope of this book makes it a must-have addition to the bookshelf of everyone in the fields of Materials Science/Engineering, Nanotechnologies / Nanosciences, Medical Sciences, Biochemistry, Polymer Chemistry, and Biomedical Engineering.<br>

Diese Produkte könnten Sie auch interessieren:

Biomedical Imaging
Biomedical Imaging
von: Reiner Salzer
PDF ebook
120,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
PDF ebook
38,99 €
Clinical Reasoning in Occupational Therapy
Clinical Reasoning in Occupational Therapy
von: Linda Robertson
EPUB ebook
38,99 €