Details

Handbook of Chaos Control


Handbook of Chaos Control


2. Aufl.

von: Eckehard Schöll, Heinz Georg Schuster

288,99 €

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 08.09.2008
ISBN/EAN: 9783527622320
Sprache: englisch
Anzahl Seiten: 849

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community.<br> An interdisciplinary approach of interest to scientists and engineers working in a number of areas.<br>
<p>Preface xxi</p> <p>List of Contributors xxiii</p> <p><b>Part I Basic Aspects and Extension of Methods</b></p> <p><b>1 Controlling Chaos 3<br /> </b><i>Elbert E. N. Macau and Celso Grebogi</i></p> <p>1.1 Introduction 3</p> <p>1.2 The OGY Chaos Control 6</p> <p>1.3 Targeting–Steering Chaotic Trajectories 8</p> <p>1.3.1 Part I: Finding a Proper Trajectory 9</p> <p>1.3.2 Part II: Finding a Pseudo-Orbit Trajectory 10</p> <p>1.3.3 The Targeting Algorithm 12</p> <p>1.4 Applying Control of Chaos and Targeting Ideas 13</p> <p>1.4.1 Controlling an Electronic Circuit 13</p> <p>1.4.2 Controlling a Complex System 19</p> <p>1.5 Conclusion 26</p> <p>References 26</p> <p><b>2 Time-Delay Control for Discrete Maps 29<br /> </b><i>Joshua E. S. Socolar</i></p> <p>2.1 Overview: Why Study Discrete Maps? 29</p> <p>2.2 Theme and Variations 31</p> <p>2.2.1 Rudimentary Time-Delay Feedback 32</p> <p>2.2.2 Extending the Domain of Control 34</p> <p>2.2.3 High-Dimensional Systems 37</p> <p>2.3 Robustness of Time-Delay Stabilization 41</p> <p>2.4 Summary 44</p> <p>Acknowledgments 44</p> <p>References 44</p> <p><b>3 An Analytical Treatment of the Delayed Feedback Control Algorithm 47<br /> </b><i>Kestutis Pyragas, Tatjana Pyragienė, and Viktoras Pyragas</i></p> <p>3.1 Introduction 47</p> <p>3.2 Proportional Versus Delayed Feedback 50</p> <p>3.3 Controlling Periodic Orbits Arising from a Period Doubling Bifurcation 53</p> <p>3.3.1 Example: Controlling the Rössler System 54</p> <p>3.4 Control of Forced Self-Sustained Oscillations 57</p> <p>3.4.1 Problem Formulation and Averaged Equation 57</p> <p>3.4.2 Periodic Orbits of the Free System 58</p> <p>3.4.3 Linear Stability of the System Controlled by Delayed Feedback 60</p> <p>3.4.4 Numerical Demonstrations 63</p> <p>3.5 Controlling Torsion-Free Periodic Orbits 63</p> <p>3.5.1 Example: Controlling the Lorenz System at a Subcritical Hopf Bifurcation 65</p> <p>3.6 Conclusions 68</p> <p>References 70</p> <p><b>4 Beyond the Odd-Number Limitation of Time-Delayed Feedback Control 73<br /> </b><i>Bernold Fiedler, Valentin Flunkert, Marc Georgi, Philipp Hövel, and Eckehard Schöll</i></p> <p>4.1 Introduction 73</p> <p>4.2 Mechanism of Stabilization 74</p> <p>4.3 Conditions on the Feedback Gain 78</p> <p>4.4 Conclusion 82</p> <p>Acknowledgments 82</p> <p>Appendix: Calculation of Floquet Exponents 82</p> <p>References 83</p> <p><b>5 On Global Properties of Time-Delayed Feedback Control 85<br /> </b><i>Wolfram Just</i></p> <p>5.1 Introduction 85</p> <p>5.2 A Comment on Control and Root Finding Algorithms 88</p> <p>5.3 Codimension-Two Bifurcations and Basins of Attraction 91</p> <p>5.3.1 The Transition from Super- to Subcritical Behavior 91</p> <p>5.3.2 Probing Basins of Attraction in Experiments 93</p> <p>5.4 A Case Study of Global Features for Time-Delayed Feedback Control 94</p> <p>5.4.1 Analytical Bifurcation Analysis of One-Dimensional Maps 95</p> <p>5.4.2 Dependence of Sub- and Supercritical Behavior on the Observable 98</p> <p>5.4.3 Influence of the Coupling of the Control Force 99</p> <p>5.5 Conclusion 101</p> <p>Acknowledgments 102</p> <p>Appendix A. Normal Form Reduction 103</p> <p>Appendix B. Super- and Subcritical Hopf Bifurcation for Maps 106</p> <p>References 106</p> <p><b>6 Poincaré-Based Control of Delayed Measured Systems: Limitations and Improved Control 109<br /> </b><i>Jens Christian Claussen</i></p> <p>6.1 Introduction 109</p> <p>6.1.1 The Delay Problem–Time-Discrete Case 109</p> <p>6.1.2 Experimental Setups with Delay 111</p> <p>6.2 Ott-Grebogi-Yorke (OGY) Control 112</p> <p>6.3 Limitations of Unmodified Control and Simple Improved Control Schemes 113</p> <p>6.3.1 Limitations of Unmodified OGY Control in the Presence of Delay 113</p> <p>6.3.2 Stability Diagrams Derived by the Jury Criterion 116</p> <p>6.3.3 Stabilizing Unknown Fixed Points: Limitations of Unmodified Difference Control 116</p> <p>6.3.4 Rhythmic Control Schemes: Rhythmic OGY Control 119</p> <p>6.3.5 Rhythmic Difference Control 120</p> <p>6.3.6 A Simple Memory Control Scheme: Using State Space Memory 122</p> <p>6.4 Optimal Improved Control Schemes 123</p> <p>6.4.1 Linear Predictive Logging Control (LPLC) 123</p> <p>6.4.2 Nonlinear Predictive Logging Control 124</p> <p>6.4.3 Stabilization of Unknown Fixed Points: Memory Difference Control (mdc) 125</p> <p>6.5 Summary 126</p> <p>References 127</p> <p><b>7 Nonlinear and Adaptive Control of Chaos 129<br /> </b><i>Alexander Fradkov and Alexander Pogromsky</i></p> <p>7.1 Introduction 129</p> <p>7.2 Chaos and Control: Preliminaries 130</p> <p>7.2.1 Definitions of Chaos 130</p> <p>7.2.2 Models of Controlled Systems 131</p> <p>7.2.3 Control Goals 132</p> <p>7.3 Methods of Nonlinear Control 134</p> <p>7.3.1 Gradient Method 135</p> <p>7.3.2 Speed-Gradient Method 136</p> <p>7.3.3 Feedback Linearization 141</p> <p>7.3.4 Other Methods 142</p> <p>7.3.5 Gradient Control of the Hénon System 144</p> <p>7.3.6 Feedback Linearization Control of the Lorenz System 146</p> <p>7.3.7 Speed-Gradient Stabilization of the Equilibrium Point for the Thermal Convection Loop Model 147</p> <p>7.4 Adaptive Control 148</p> <p>7.4.1 General Definitions 148</p> <p>7.4.2 Adaptive Master-Slave Synchronization of Rössler Systems 149</p> <p>7.5 Other Problems 154</p> <p>7.6 Conclusions 155</p> <p>Acknowledgment 155</p> <p>References 156</p> <p><b>Part II Controlling Space-time Chaos</b></p> <p><b>8 Localized Control of Spatiotemporal Chaos 161<br /> </b><i>Roman O. Grigoriev and Andreas Handel</i></p> <p>8.1 Introduction 161</p> <p>8.1.1 Empirical Control 163</p> <p>8.1.2 Model-Based Control 164</p> <p>8.2 Symmetry and the Minimal Number of Sensors/Actuators 167</p> <p>8.3 Nonnormality and Noise Amplification 170</p> <p>8.4 Nonlinearity and the Critical Noise Level 175</p> <p>8.5 Conclusions 177</p> <p>References 177</p> <p><b>9 Controlling Spatiotemporal Chaos: The Paradigm of the Complex Ginzburg-Landau Equation 181<br /> </b><i>Stefano Boccaletti and Jean Bragard</i></p> <p>9.1 Introduction 181</p> <p>9.2 The Complex Ginzburg-Landau Equation 183</p> <p>9.2.1 Dynamics Characterization 185</p> <p>9.3 Control of the CGLE 187</p> <p>9.4 Conclusions and Perspectives 192</p> <p>Acknowledgment 193</p> <p>References 193</p> <p><b>10 Multiple Delay Feedback Control 197<br /> </b><i>Alexander Ahlborn and Ulrich Parlitz</i></p> <p>10.1 Introduction 197</p> <p>10.2 Multiple Delay Feedback Control 198</p> <p>10.2.1 Linear Stability Analysis 199</p> <p>10.2.2 Example: Colpitts Oscillator 200</p> <p>10.2.3 Comparison with High-Pass Filter and PD Controller 203</p> <p>10.2.4 Transfer Function of MDFC 204</p> <p>10.3 From Multiple Delay Feedback Control to Notch Filter Feedback 206</p> <p>10.4 Controllability Criteria 208</p> <p>10.4.1 Multiple Delay Feedback Control 209</p> <p>10.4.2 Notch Filter Feedback and High-Pass Filter 210</p> <p>10.5 Laser Stabilization Using MDFC and NFF 211</p> <p>10.6 Controlling Spatiotemporal Chaos 213</p> <p>10.6.1 The Ginzburg-Landau Equation 213</p> <p>10.6.2 Controlling Traveling Plane Waves 214</p> <p>10.6.3 Local Feedback Control 215</p> <p>10.7 Conclusion 218</p> <p>References 219</p> <p><b>Part III Controlling Noisy Motion</b></p> <p><b>11 Control of Noise-Induced Dynamics 223<br /> </b><i>Natalia B. Janson, Alexander G. Balanov, and Eckehard Schöll</i></p> <p>11.1 Introduction 223</p> <p>11.2 Noise-Induced Oscillations Below Andronov-Hopf Bifurcation and their Control 226</p> <p>11.2.1 Weak Noise and Control: Correlation Function 228</p> <p>11.2.2 Weak Noise and No Control: Correlation Time and Spectrum 229</p> <p>11.2.3 Weak Noise and Control: Correlation Time 231</p> <p>11.2.4 Weak Noise and Control: Spectrum 235</p> <p>11.2.5 Any Noise and No Control: Correlation Time 236</p> <p>11.2.6 Any Noise and Control: Correlation Time and Spectrum 238</p> <p>11.2.7 So, What Can We Control? 240</p> <p>11.3 Noise-Induced Oscillations in an Excitable System and their Control 241</p> <p>11.3.1 Coherence Resonance in the FitzHugh-Nagumo System 243</p> <p>11.3.2 Correlation Time and Spectrum when Feedback is Applied 244</p> <p>11.3.3 Control of Synchronization in Coupled FitzHugh-Nagumo Systems 245</p> <p>11.3.4 What can We Control in an Excitable System? 246</p> <p>11.4 Delayed Feedback Control of Noise-Induced Pulses in a Model of an Excitable Medium 247</p> <p>11.4.1 Model Description 247</p> <p>11.4.2 Characteristics of Noise-Induced Patterns 249</p> <p>11.4.3 Control of Noise-Induced Patterns 251</p> <p>11.4.4 Mechanisms of Delayed Feedback Control of the Excitable Medium 253</p> <p>11.4.5 What Can Be Controlled in an Excitable Medium? 254</p> <p>11.5 Delayed Feedback Control of Noise-Induced Patterns in a Globally Coupled Reaction–Diffusion Model 255</p> <p>11.5.1 Spatiotemporal Dynamics in the Uncontrolled Deterministic System 256</p> <p>11.5.2 Noise-Induced Patterns in the Uncontrolled System 258</p> <p>11.5.3 Time-Delayed Feedback Control of Noise-Induced Patterns 260</p> <p>11.5.4 Linear Modes of the Inhomogeneous Fixed Point 264</p> <p>11.5.5 Delay-Induced Oscillatory Patterns 268</p> <p>11.5.6 What Can Be Controlled in a Globally Coupled Reaction–Diffusion System? 269</p> <p>11.6 Summary and Conclusions 270</p> <p>Acknowledgments 270</p> <p>References 270</p> <p><b>12 Controlling Coherence of Noisy and Chaotic Oscillators by Delayed Feedback 275<br /> </b><i>Denis Goldobin, Michael Rosenblum, and Arkady Pikovsky</i></p> <p>12.1 Control of Coherence: Numerical Results 276</p> <p>12.1.1 Noisy Oscillator 276</p> <p>12.1.2 Chaotic Oscillator 277</p> <p>12.1.3 Enhancing Phase Synchronization 279</p> <p>12.2 Theory of Coherence Control 279</p> <p>12.2.1 Basic Phase Model 279</p> <p>12.2.2 Noise-Free Case 280</p> <p>12.2.3 Gaussian Approximation 280</p> <p>12.2.4 Self-Consistent Equation for Diffusion Constant 282</p> <p>12.2.5 Comparison of Theory and Numerics 283</p> <p>12.3 Control of Coherence by Multiple Delayed Feedback 283</p> <p>12.4 Conclusion 288</p> <p>References 289</p> <p><b>13 Resonances Induced by the Delay Time in Nonlinear Autonomous Oscillators with Feedback 291<br /> </b><i>Cristina Masoller</i></p> <p>Acknowledgment 298</p> <p>References 299</p> <p><b>Part IV Communicating with Chaos, Chaos Synchronization</b></p> <p><b>14 Secure Communication with Chaos Synchronization 303<br /> </b><i>Wolfgang Kinzel and Ido Kanter</i></p> <p>14.1 Introduction 303</p> <p>14.2 Synchronization of Chaotic Systems 304</p> <p>14.3 Coding and Decoding Secret Messages in Chaotic Signals 309</p> <p>14.4 Analysis of the Exchanged Signal 311</p> <p>14.5 Neural Cryptography 313</p> <p>14.6 Public Key Exchange by Mutual Synchronization 315</p> <p>14.7 Public Keys by Asymmetric Attractors 318</p> <p>14.8 Mutual Chaos Pass Filter 319</p> <p>14.9 Discussion 321</p> <p>References 323</p> <p><b>15 Noise Robust Chaotic Systems 325<br /> </b><i>Thomas L. Carroll</i></p> <p>15.1 Introduction 325</p> <p>15.2 Chaotic Synchronization 326</p> <p>15.3 2-Frequency Self-Synchronizing Chaotic Systems 326</p> <p>15.3.1 Simple Maps 326</p> <p>15.4 2-Frequency Synchronization in Flows 329</p> <p>15.4.1 2-Frequency Additive Rössler 329</p> <p>15.4.2 Parameter Variation and Periodic Orbits 332</p> <p>15.4.3 Unstable Periodic Orbits 333</p> <p>15.4.4 Floquet Multipliers 334</p> <p>15.4.5 Linewidths 335</p> <p>15.5 Circuit Experiments 336</p> <p>15.5.1 Noise Effects 338</p> <p>15.6 Communication Simulations 338</p> <p>15.7 Multiplicative Two-Frequency Rössler Circuit 341</p> <p>15.8 Conclusions 346</p> <p>References 346</p> <p><b>16 Nonlinear Communication Strategies 349<br /> </b><i>Henry D.I. Abarbanel</i></p> <p>16.1 Introduction 349</p> <p>16.1.1 Secrecy, Encryption, and Security? 350</p> <p>16.2 Synchronization 351</p> <p>16.3 Communicating Using Chaotic Carriers 353</p> <p>16.4 Two Examples from Optical Communication 355</p> <p>16.4.1 Rare-Earth-Doped Fiber Amplifier Laser 355</p> <p>16.4.2 Time Delay Optoelectronic Feedback Semiconductor Laser 357</p> <p>16.5 Chaotic Pulse Position Communication 359</p> <p>16.6 Why Use Chaotic Signals at All? 362</p> <p>16.7 Undistorting the Nonlinear Effects of the Communication Channel 363</p> <p>16.8 Conclusions 366</p> <p>References 367</p> <p><b>17 Synchronization and Message Transmission for Networked Chaotic Optical Communications 369<br /> </b><i>K. Alan Shore, Paul S. Spencer, and Ilestyn Pierce</i></p> <p>17.1 Introduction 369</p> <p>17.2 Synchronization and Message Transmission 370</p> <p>17.3 Networked Chaotic Optical Communication 372</p> <p>17.3.1 Chaos Multiplexing 373</p> <p>17.3.2 Message Relay 373</p> <p>17.3.3 Message Broadcasting 374</p> <p>17.4 Summary 376</p> <p>Acknowledgments 376</p> <p>References 376</p> <p><b>18 Feedback Control Principles for Phase Synchronization 379<br /> </b><i>Vladimir N. Belykh, Grigory V. Osipov, and Jürgen Kurths</i></p> <p>18.1 Introduction 379</p> <p>18.2 General Principles of Automatic Synchronization 381</p> <p>18.3 Two Coupled Poincaré Systems 384</p> <p>18.4 Coupled van der Pol and Rössler Oscillators 386</p> <p>18.5 Two Coupled Rössler Oscillators 389</p> <p>18.6 Coupled Rössler and Lorenz Oscillators 391</p> <p>18.7 Principles of Automatic Synchronization in Networks of Coupled Oscillators 393</p> <p>18.8 Synchronization of Locally Coupled Regular Oscillators 395</p> <p>18.9 Synchronization of Locally Coupled Chaotic Oscillators 397</p> <p>18.10 Synchronization of Globally Coupled Chaotic Oscillators 399</p> <p>18.11 Conclusions 401</p> <p>References 401</p> <p><b>Part V Applications to Optics</b></p> <p><b>19 Controlling Fast Chaos in Optoelectronic Delay Dynamical Systems 407<br /> </b><i>Lucas Illing, Daniel J. Gauthier, and Jonathan N. Blakely</i></p> <p>19.1 Introduction 407</p> <p>19.2 Control-Loop Latency: A Simple Example 408</p> <p>19.3 Controlling Fast Systems 412</p> <p>19.4 A Fast Optoelectronic Chaos Generator 415</p> <p>19.5 Controlling the Fast Optoelectronic Device 419</p> <p>19.6 Outlook 423</p> <p>Acknowledgment 424</p> <p>References 424</p> <p><b>20 Control of Broad-Area Laser Dynamics with Delayed Optical Feedback 427<br /> </b><i>Nicoleta Gaciu, Edeltraud Gehrig, and Ortwin Hess</i></p> <p>20.1 Introduction: Spatiotemporally Chaotic Semiconductor Lasers 427</p> <p>20.2 Theory: Two-Level Maxwell-Bloch Equations 429</p> <p>20.3 Dynamics of the Solitary Laser 432</p> <p>20.4 Detection of Spatiotemporal Complexity 433</p> <p>20.4.1 Reduction of the Number of Modes by Coherent Injection 433</p> <p>20.4.2 Pulse-Induced Mode Synchronization 435</p> <p>20.5 Self-Induced Stabilization and Control with Delayed Optical Feedback 438</p> <p>20.5.1 Influence of Delayed Optical Feedback 439</p> <p>20.5.2 Influence of the Delay Time 440</p> <p>20.5.3 Spatially Structured Delayed Optical Feedback Control 444</p> <p>20.5.4 Filtered Spatially Structured Delayed Optical Feedback 449</p> <p>20.6 Conclusions 451</p> <p>References 453</p> <p><b>21 Noninvasive Control of Semiconductor Lasers by Delayed Optical Feedback 455<br /> </b><i>Hans-Jürgen Wünsche, Sylvia Schikora, and Fritz Henneberger</i></p> <p>21.1 The Role of the Optical Phase 456</p> <p>21.2 Generic Linear Model 459</p> <p>21.3 Generalized Lang-Kobayashi Model 461</p> <p>21.4 Experiment 462</p> <p>21.4.1 The Integrated Tandem Laser 463</p> <p>21.4.2 Design of the Control Cavity 464</p> <p>21.4.3 Maintaining Resonance 465</p> <p>21.4.4 Latency and Coupling Strength 465</p> <p>21.4.5 Results of the Control Experiment 466</p> <p>21.5 Numerical Simulation 468</p> <p>21.5.1 Traveling-Wave Model 468</p> <p>21.5.2 Noninvasive Control Beyond a Hopf Bifurcation 470</p> <p>21.5.3 Control Dynamics 470</p> <p>21.5.4 Variation of the Control Parameters 471</p> <p>21.6 Conclusions 473</p> <p>Acknowledgment 473</p> <p>References 473</p> <p><b>22 Chaos and Control in Semiconductor Lasers 475<br /> </b><i>Junji Ohtsubo</i></p> <p>22.1 Introduction 475</p> <p>22.2 Chaos in Semiconductor Lasers 476</p> <p>22.2.1 Laser Chaos 476</p> <p>22.2.2 Optical Feedback Effects in Semiconductor Lasers 478</p> <p>22.2.3 Chaotic Effects in Newly Developed Semiconductor Lasers 480</p> <p>22.3 Chaos Control in Semiconductor Lasers 485</p> <p>22.4 Control in Newly Developed Semiconductor Lasers 494</p> <p>22.5 Conclusions 497</p> <p>References 498</p> <p><b>23 From Pattern Control to Synchronization: Control Techniques in Nonlinear Optical Feedback Systems 501<br /> </b><i>Björn Gütlich and Cornelia Denz</i></p> <p>23.1 Control Methods for Spatiotemporal Systems 502</p> <p>23.2 Optical Single-Feedback Systems 503</p> <p>23.2.1 A Simplified Single-Feedback Model System 504</p> <p>23.2.2 The Photorefractive Single-Feedback System – Coherent Nonlinearity 506</p> <p>23.2.3 Theoretical Description of the Photorefractive Single-Feedback System 508</p> <p>23.2.4 Linear Stability Analysis 509</p> <p>23.2.5 The LCLV Single-Feedback System – Incoherent Nonlinearity 510</p> <p>23.2.6 Phase-Only Mode 511</p> <p>23.2.7 Polarization Mode 513</p> <p>23.2.8 Dissipative Solitons in the LCLV Feedback System 513</p> <p>23.3 Spatial Fourier Control 514</p> <p>23.3.1 Experimental Determination of Marginal Instability 516</p> <p>23.3.2 Stabilization of Unstable Pattern 517</p> <p>23.3.3 Direct Fourier Filtering 518</p> <p>23.3.4 Positive Fourier Control 518</p> <p>23.3.5 Noninvasive Fourier Control 519</p> <p>23.4 Real-Space Control 520</p> <p>23.4.1 Invasive Forcing 520</p> <p>23.4.2 Positioning of Localized States 522</p> <p>23.4.3 System Homogenization 522</p> <p>23.4.4 Static Positioning 523</p> <p>23.4.5 Addressing and Dynamic Positioning 523</p> <p>23.5 Spatiotemporal Synchronization 524</p> <p>23.5.1 Spatial Synchronization of Periodic Pattern 524</p> <p>23.5.2 Unidirectional Synchronization of Two LCLV Systems 525</p> <p>23.5.3 Synchronization of Spatiotemporal Complexity 526</p> <p>23.6 Conclusions and Outlook 527</p> <p>References 528</p> <p><b>Part VI Applications to Electronic Systems</b></p> <p><b>24 Delayed-Feedback Control of Chaotic Spatiotemporal Patterns in Semiconductor Nanostructures 533<br /> </b><i>Eckehard Schöll</i></p> <p>24.1 Introduction 533</p> <p>24.2 Control of Chaotic Domain and Front Patterns in Superlattices 536</p> <p>24.3 Control of Chaotic Spatiotemporal Oscillations in Resonant Tunneling Diodes 544</p> <p>24.4 Conclusions 553</p> <p>Acknowledgments 554</p> <p>References 554</p> <p><b>25 Observing Global Properties of Time-Delayed Feedback Control in Electronic Circuits 559<br /> </b><i>Hartmut Benner, Chol-Ung Choe, Klaus Höhne, Clemens von Loewenich, Hiroyuki Shirahama, and Wolfram Just</i></p> <p>25.1 Introduction 559</p> <p>25.2 Discontinuous Transitions for Extended Time-Delayed Feedback Control 560</p> <p>25.2.1 Theoretical Considerations 560</p> <p>25.2.2 Experimental Setup 561</p> <p>25.2.3 Observation of Bistability 562</p> <p>25.2.4 Basin of Attraction 564</p> <p>25.3 Controlling Torsion-Free Unstable Orbits 565</p> <p>25.3.1 Applying the Concept of an Unstable Controller 567</p> <p>25.3.2 Experimental Design of an Unstable van der Pol Oscillator 567</p> <p>25.3.3 Control Coupling and Basin of Attraction 569</p> <p>25.4 Conclusions 572</p> <p>References 573</p> <p><b>26 Application of a Black Box Strategy to Control Chaos 575<br /> </b><i>Achim Kittel and Martin Popp</i></p> <p>26.1 Introduction 575</p> <p>26.2 The Model Systems 575</p> <p>26.2.1 Shinriki Oscillator 576</p> <p>26.2.2 Mackey-Glass Type Oscillator 577</p> <p>26.3 The Controller 580</p> <p>26.4 Results of the Application of the Controller to the Shinriki Oscillator 582</p> <p>26.4.1 Spectroscopy of Unstable Periodic Orbits 584</p> <p>26.5 Results of the Application of the Controller to the Mackey-Glass Oscillator 585</p> <p>26.5.1 Spectroscopy of Unstable Periodic Orbits 587</p> <p>26.6 Further Improvements 589</p> <p>26.7 Conclusions 589</p> <p>Acknowledgment 590</p> <p>References 590</p> <p><b>Part VII Applications to Chemical Reaction Systems</b></p> <p><b>27 Feedback-Mediated Control of Hypermeandering Spiral Waves 593<br /> </b><i>Jan Schlesner, Vladimir Zykov, and Harald Engel</i></p> <p>27.1 Introduction 593</p> <p>27.2 The FitzHugh-Nagumo Model 594</p> <p>27.3 Stabilization of Rigidly Rotating Spirals in the Hypermeandering Regime 596</p> <p>27.4 Control of Spiral Wave Location in the Hypermeandering Regime 599</p> <p>27.5 Discussion 605</p> <p>References 606</p> <p><b>28 Control of Spatiotemporal Chaos in Surface Chemical Reactions 609<br /> </b><i>Carsten Beta and Alexander S. Mikhailov</i></p> <p>28.1 Introduction 609</p> <p>28.2 The Catalytic CO Oxidation on Pt(110) 610</p> <p>28.2.1 Mechanism 610</p> <p>28.2.2 Modeling 611</p> <p>28.2.3 Experimental Setup 612</p> <p>28.3 Spatiotemporal Chaos in Catalytic CO Oxidation on Pt(110) 613</p> <p>28.4 Control of Spatiotemporal Chaos by Global Delayed Feedback 615</p> <p>28.4.1 Control of Turbulence in Catalytic CO Oxidation – Experimental 616</p> <p>28.4.1.1 Control of Turbulence 617</p> <p>28.4.1.2 Spatiotemporal Pattern Formation 618</p> <p>28.4.2 Control of Turbulence in Catalytic CO Oxidation – Numerical Simulations 619</p> <p>28.4.3 Control of Turbulence in Oscillatory Media – Theory 621</p> <p>28.4.4 Time-Delay Autosynchronization 625</p> <p>28.5 Control of Spatiotemporal Chaos by Periodic Forcing 628</p> <p>Acknowledgment 630</p> <p>References 630</p> <p><b>29 Forcing and Feedback Control of Arrays of Chaotic Electrochemical Oscillators 633<br /> </b><i>István Z. Kiss and John L. Hudson</i></p> <p>29.1 Introduction 633</p> <p>29.2 Control of Single Chaotic Oscillator 634</p> <p>29.2.1 Experimental Setup 634</p> <p>29.2.2 Chaotic Ni Dissolution: Low-Dimensional, Phase Coherent Attractor 635</p> <p>29.2.2.1 Unforced Chaotic Oscillator 635</p> <p>29.2.2.2 Phase of the Unforced System 636</p> <p>29.2.3 Forcing: Phase Synchronization and Intermittency 637</p> <p>29.2.3.1 Forcing with X=x 0 637</p> <p>29.2.3.2 Forcing with X 6ˆ X 0 638</p> <p>29.2.4 Delayed Feedback: Tracking 638</p> <p>29.3 Control of Small Assemblies of Chaotic Oscillators 640</p> <p>29.4 Control of Oscillator Populations 642</p> <p>29.4.1 Global Coupling 642</p> <p>29.4.2 Periodic Forcing of Arrays of Chaotic Oscillators 643</p> <p>29.4.3 Feedback on Arrays of Chaotic Oscillators 644</p> <p>29.4.4 Feedback, Forcing, and Global Coupling: Order Parameter 645</p> <p>29.4.5 Control of Complexity of a Collective Signal 646</p> <p>29.5 Concluding Remarks 647</p> <p>Acknowledgment 648</p> <p>References 649</p> <p><b>Part VIII Applications to Biology</b></p> <p><b>30 Control of Synchronization in Oscillatory Neural Networks 653<br /> </b><i>Peter A. Tass, Christian Hauptmann, and Oleksandr V. Popovych</i></p> <p>30.1 Introduction 653</p> <p>30.2 Multisite Coordinated Reset Stimulation 654</p> <p>30.3 Linear Multisite Delayed Feedback 662</p> <p>30.4 Nonlinear Delayed Feedback 666</p> <p>30.5 Reshaping Neural Networks 674</p> <p>30.6 Discussion 676</p> <p><b><i>References 678</i></b></p> <p><b>31 Control of Cardiac Electrical Nonlinear Dynamics 683<br /> </b><i>Trine Krogh-Madsen, Peter N. Jordan, and David J. Christini</i></p> <p>31.1 Introduction 683</p> <p>31.2 Cardiac Electrophysiology 684</p> <p>31.2.1 Restitution and Alternans 685</p> <p>31.3 Cardiac Arrhythmias 686</p> <p>31.3.1 Reentry 687</p> <p>31.3.2 Ventricular Tachyarrhythmias 688</p> <p>31.3.3 Alternans as an Arrhythmia Trigger 688</p> <p>31.4 Current Treatment of Arrhythmias 689</p> <p>31.4.1 Pharmacological Treatment 689</p> <p>31.4.2 Implantable Cardioverter Defibrillators 689</p> <p>31.4.3 Ablation Therapy 690</p> <p>31.5 Alternans Control 691</p> <p>31.5.1 Controlling Cellular Alternans 691</p> <p>31.5.2 Control of Alternans in Tissue 692</p> <p>31.5.3 Limitations of the DFC Algorithm in Alternans Control 693</p> <p>31.5.4 Adaptive DI Control 694</p> <p>31.6 Control of Ventricular Tachyarrhythmias 695</p> <p>31.6.1 Suppression of Spiral Waves 696</p> <p>31.6.2 Antitachycardia Pacing 696</p> <p>31.6.3 Unpinning Spiral Waves 698</p> <p>31.7 Conclusions and Prospects 699</p> <p>References 700</p> <p><b>32 Controlling Spatiotemporal Chaos and Spiral Turbulence in Excitable Media 703<br /> </b><i>Sitabhra Sinha and S. Sridhar</i></p> <p>32.1 Introduction 703</p> <p>32.2 Models of Spatiotemporal Chaos in Excitable Media 706</p> <p>32.3 Global Control 708</p> <p>32.4 Nonglobal Spatially Extended Control 711</p> <p>32.4.1 Applying Control Over a Mesh 711</p> <p>32.4.2 Applying Control Over an Array of Points 713</p> <p>32.5 Local Control of Spatiotemporal Chaos 714</p> <p>32.6 Discussion 716</p> <p>Acknowledgments 717</p> <p>References 718</p> <p><b>Part IX Applications to Engineering</b></p> <p><b>33 Nonlinear Chaos Control and Synchronization 721<br /> </b><i>Henri J. C. Huijberts and Henk Nijmeijer</i></p> <p>33.1 Introduction 721</p> <p>33.2 Nonlinear Geometric Control 721</p> <p>33.2.1 Some Differential Geometric Concepts 722</p> <p>33.2.2 Nonlinear Controllability 723</p> <p>33.2.3 Chaos Control Through Feedback Linearization 728</p> <p>33.2.4 Chaos Control Through Input–Output Linearization 732</p> <p>33.3 Lyapunov Design 737</p> <p>33.3.1 Lyapunov Stability and Lyapunov’s First Method 737</p> <p>33.3.2 Lyapunov’s Direct Method 739</p> <p>33.3.3 LaSalle’s Invariance Principle 741</p> <p>33.3.4 Examples 742</p> <p>References 749</p> <p><b>34 Electronic Chaos Controllers – From Theory to Applications 751<br /> </b><i>Maciej Ogorzałek</i></p> <p>34.1 Introduction 751</p> <p>34.1.1 Chaos Control 752</p> <p>34.1.2 Fundamental Properties of Chaotic Systems and Goals of the Control 753</p> <p>34.2 Requirements for Electronic Implementation of Chaos Controllers 754</p> <p>34.3 Short Description of the OGY Technique 755</p> <p>34.4 Implementation Problems for the OGY Method 757</p> <p>34.4.1 Effects of Calculation Precision 758</p> <p>34.4.2 Approximate Procedures for Finding Periodic Orbits 759</p> <p>34.4.3 Effects of Time Delays 759</p> <p>34.5 Occasional Proportional Feedback (Hunt’s) Controller 761</p> <p>34.5.1 Improved Chaos Controller for Autonomous Circuits 763</p> <p>34.6 Experimental Chaos Control Systems 765</p> <p>34.6.1 Control of a Magnetoelastic Ribbon 765</p> <p>34.6.2 Control of a Chaotic Laser 766</p> <p>34.6.3 Chaos-Based Arrhythmia Suppression and Defibrillation 767</p> <p>34.7 Conclusions 768</p> <p>References 769</p> <p><b>35 Chaos in Pulse-Width Modulated Control Systems 771<br /> </b><i>Zhanybai T. Zhusubaliyev and Erik Mosekilde</i></p> <p>35.1 Introduction 771</p> <p>35.2 DC/DC Converter with Pulse-Width Modulated Control 774</p> <p>35.3 Bifurcation Analysis for the DC/DC Converter with One-Level Control 778</p> <p>35.4 DC/DC Converter with Two-Level Control 781</p> <p>35.5 Bifurcation Analysis for the DC/DC Converter with Two-Level Control 783</p> <p>35.6 Conclusions 784</p> <p>Acknowledgments 788</p> <p>References 788</p> <p><b>36 Transient Dynamics of Duffing System Under Time-Delayed Feedback Control: Global Phase Structure and Application to Engineering 793<br /> </b><i>Takashi Hikihara and Kohei Yamasue</i></p> <p>36.1 Introduction 793</p> <p>36.2 Transient Dynamics of Transient Behavior 794</p> <p>36.2.1 Magnetoelastic Beam and Experimental Setup 794</p> <p>36.2.2 Transient Behavior 795</p> <p>36.3 Initial Function and Domain of Attraction 797</p> <p>36.4 Persistence of Chaos 800</p> <p>36.5 Application of TDFC to Nanoengineering 803</p> <p>36.5.1 Dynamic Force Microscopy and its Dynamics 803</p> <p>36.5.2 Application of TDFC 805</p> <p>36.5.3 Extension of Operating Range 806</p> <p>36.6 Conclusions 808</p> <p>References 808</p> <p>Subject Index 811 </p>
"The book is interdisciplinary and can be of interest to graduate students, researchers in different fields: physicists, mathematicians and, engineers." (<i>Zentralblatt MATH</i>, 1132, 2008)
Heinz Georg Schuster is Professor of Theoretical Physics at the University of Kiel in Germany. In 1971 he received his doctorate and in 1976 he was appointed Professor at the University of Frankfurt/Main in Germany. He was a visiting professor at the Weizmann-Institute of Science in Israel and at the California Institute of Technology in Pasadena, USA. Professor Schuster works on the dynamical behaviour of complex adaptive systems and authored and coauthored several books in this field. His book "Deterministic Chaos" which was also published at Wiley-VCH, has been translated into five languages.<br> <br> <br> Eckehard Scholl received his M.Sc. in physics from the University of Tuebingen, Germany, and his Ph.D. degree in applied mathematics from the University of Southampton, England. In 1989 he was appointed to a professorship in theoretical physics at the Technical University of Berlin, where he still teaches. His research interests are nonlinear dynamic systems, including nonlinear spatio-temporal dynamics, chaos, pattern formation, noise, and control. He authored and coauthored several books in his field.<br> Professor Scholl was awarded the "Champion in teaching" prize by the Technical University of Berlin in 1997 and a Visiting Professorship by the London Mathematical Society in 2004.<br>
This long-awaited revised second edition of the standard reference on the subject has been considerably expanded to include such recent developments as novel control schemes, control of chaotic space-time patterns, control of noisy nonlinear systems, and communication with chaos, as well as promising new directions in research. The contributions from leading international scientists active in the field provide a comprehensive overview of our current level of knowledge on chaos control and its applications in physics, chemistry, biology, medicine, and engineering. In addition, they show the overlap with the traditional field of control theory in the engineering community.<br> <br> From the Contents:<br> I<br> Basic Aspects and Extension of Methods<br> II<br> Controlling Space-Time Chaos<br> III<br> Controlling Noisy Motion<br> IV<br> Communicating with Chaos, Chaos Synchronisation<br> V<br> Applications to Optics<br> VI<br> Applications to Electronic Systems<br> VII<br> Applications to Chemical Reaction Systems<br> VIII<br> Applications to Biology<br> IX<br> Applications to Engineering<br>

Diese Produkte könnten Sie auch interessieren:

Applied Biophysics
Applied Biophysics
von: Thomas Andrew Waigh
PDF ebook
43,99 €
Polymer Physics
Polymer Physics
von: Leszek A. Utracki, Alexander M. Jamieson
PDF ebook
181,99 €
Biophysical Bone Behaviour
Biophysical Bone Behaviour
von: Jitendra Behari
PDF ebook
179,99 €